Flexible Power Generation – ETN Webinar Series – 4th episode

PUMP-HEAT

Innovative concept to increase flexibility of combined cycle power plants and gas turbines

Tuesday, January 12, 2020 • 12:00am – 01:00 pm

Heat Pump Digital Twin and Model Predictive Control

Speaker: Adrien Réveillère Siemens Digital Industries, France

This Project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement N. 764706

Digital Twin

Digital twin

- *"a dynamic virtual representation of a physical object or system across its lifecycle, using real-time data to enable understanding, learning and reasoning"*
- Bolton, R., McColl-Kennedy, J., Cheung, L., Gallan, A., Orsingher, C., Witell, L. and Zaki, M. (2018), "Customer experience challenges: bringing together digital, physical and social realms", Journal of Service Management, Vol. 29 No. 5, pp. 776-808.

System dynamic models

- Developed with Simcenter Amesim
 - 1D system simulation Tool
- Libraries used
 - Thermal, Thermal-hydraulic, Two-Phase Flow, Gas Turbine Engines, Signal (control)
- Direct usage
 - Concept validation
 - Control system validation

PreDesign Phase

Thermo dynamic cycles, steady state powers Temperature & pressure levels

Design Phase

Subsystems datasheets from suppliers for calibration

Test Phase

Transient test results for calibration

Operational Phase

Measurements for validation troubleshooting if necessary

This Project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement N. 764706

Amesim Model

This Project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement N. 764706

Model integration in the Model Predictive Control (MPC)

Thank you for your attention Contact: Adrien Réveillère adrien.reveillere@siemens.com

This Project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement N. 764706

