

H₂ Deployment in Centralised Power Generation An Economic Case Study

ETN Young Engineers Committee Sub-GroupDaria BellottiUniversity of GenoaDaria GabrieleBaker HughesJon RunyonUniperAlireza KalantariSolar TurbinesLorenzo PilottiPolitecnico di MilanoAlessandro Francesco CastelliPolitecnico di Milano

ETN Workshop – TC2: Operational and fuel flexibility 17th March 2021

Agenda

- Focus on one scenario: OCGT plant, peaking load
- Sensitivity to future CO₂ and H₂ prices
- Open questions

17 March 2021

Scope

Evaluation of the technical feasibility and economics of hydrogen utilisation for large-scale, centralised power generation to deliver a business case to ETN Hydrogen WG members and inform EC hydrogen strategies

LCOE evaluation – main assumptions

	GT Type	GT Output (MWe)	Configuration	Operating Regime	Annual Op. Hou
ſ	Small	20	OCGT	Peak	1000
	Small	20	СНР	Base	6000
	Large	300	OCGT	Peak	1000
	Large	300	CCGT	Base	6000

Parameters considered

Technical parameters

- Plant size (small large) and plant configuration (OCGT CCGT) ٠
- Nominal power after upgrading (depending on the H₂ content) •
- Plant efficiency (varying with the H₂ content)
- Equivalent operating hours (EOH): peak load vs base load

Economic parameters

- Upgrading cost ٠
- Natural gas (NG) purchasing cost
- Hydrogen (H₂) purchasing cost

Operating Regime Annual Op. Hours

CO₂ taxation cost

There is a value of CO_2 price for which the use of H_2 has a positive effect on the LCOE compared to the Base (100% NG) case

17 March 2021

ETN Global

20MW OCGT plant – peak load – Preliminary results

NG price 20€/MWh **H2 price 1.5€/kg** EOH @ 1000hr

For lower H₂ price (1.5 \notin /kg), the break-even point moves towards lower CO₂ price value (150 \notin /ton)

ETN Global

20MW OCGT plant – peak load

Break-even point at different H₂ price

Sensitivity Analysis – 20MW OCGT Plant – peak load

LCOE as function of the H_2 price and H_2 vol% for different CO₂ prices

The red line represents the LCOE value for the base case (100% NG)

17 March 2021

ETN Global

Open questions

2030 & 2050 targets

- Considered H₂ price: 1.5-2€/kg
 CO₂ price: 150-225€/ton
 - Are they aligned with the industry projections?
- Considered hydrogen shares by volume : 0% 30% 50% 70% 100%
 - Are these all considered realistic cases ?
 - Are these all expected to be workable cases in OCGT and CCGT?
 - What is the timescale considered between hydrogen blending and 100% hydrogen operation?

Thank you

Don't hesitate to contact the ETN Office (<u>vm@etn.global</u>) if you would like to join the ETN Hydrogen Working Group or the support group regularly invited to review the work of the ETN Young Engineers Committee sub-group