

Empowering Energy Evolution.

Hydrogen Operational Assessment

Tom Kavanagh Head of Asset Improvement & MNZP Uniper

Contents

- 1. Introduction to Uniper
- 2. Net Zero Commitment & The 'Making Net Zero Possible' Project
- 3. Hydrogen Operation Assessment
- 4. Summary

Uniper at a glance

Our Operations

- 12,000 Employees ٠
- 40 Countries
- Power Generation ٠
- **Commodity Trading** ٠
- **Energy Sales** •
- **Energy Services** ٠
- Growth areas: Hydrogen, Renewables ٠

Trading

Power generation

Our highly flexible and adjustable power plants ensure a sufficient and reliable power supply

- With around 35 GW of installed generation capacity, we are among the largest global power generators.
- Thanks to our high proportion of hydroelectric and gas plants, our power plant complex is especially environmentally friendly.
- In Russia, our power plants provide approximately 5% of the country's total energy needs.

24 GW power generation in Europe¹

11 GW power generation in Russia¹ (5 power plants)

European Generation carbon neutral by 2035

The European Gas Turbine Fleet

- ~480 people, operating and maintaining ~10GW installed capacity.
- Locations in 5 countries.
- Combined and open cycle configurations.
- CHP applications for industry and city heating.
- Delivering a range of products and services to customers and the different markets.

Net Zero journey for our GT Assets

Decarbonization via Hydrogen addition to Natural Gas - Operational Assessments

- Process Safety
 - Fire and Explosion Concept
 - Purge procedures
 - Equipment suitability
 - Information and Training
- Maintenance & Life Management
 - GT EOH Effects
 - HRSG
 - Piping
 - Isolation and venting for work
 - Spares

• Performance

- Power output
- Efficiency
- Reliability & Availability
- Emissions

• Flexibility

- Start and Shutdown times
- Load Range Pmin & Pmax
- Ramp Rates
- Fuel flexibility
- Rate of change of H2

Initial findings

Process safety	Overall acceptable, with assessment/mods as required
Recognising H2 is a small, light molecule with wider flammability limits, lower ignition energy and increased flame speeds	
compared to methane, consider effects on:	
Purge process - Fuel lines	Further Assessment Required
Purge process - gas path/HRSG	
Fire and Explosion Concept for full plant	ATEX requirement IIC; zoning assessment
Hazardous area classification / zoning - including leak scenarios and enclosure design	
Sensors - haz-gas sensors; flame detection; H2 fuel gas sensors, etc	
Exhaust system explosion risk (start up, shut down, flame out)	
Individual equipment specifications (valves, compressors, heaters) - tolerant of hydrogen?	Material checks & compatibility for H2
Drawings / Operating / Maintenance manual updates	
Operator training	
	No affects expected, but would require verification on first
Maintenance/ Life Management	application
Effect on unit maintenance/inspection intervals (Materials for vales, sealing etc)	
Piping - Hydrogen embrittlement (Materials for vales, sealing etc)	Some component changes required for material compatibility
GT - EOH factor effects	Not expected, but need to check with interim inspections
HRSG - compliance and integritty	May need to manage ADP risk
Steam Turbine	
Electrical/Generators	
Procedures to isolate / maintain	H2 venting needs appropriate design
LTSA/maintenance contract impacts	
Spare part stock holding on site (all parts, including pipes, seals, gaskets, etc.)	

Initial findings

Performance	De-rating required to manage NOx/combustion dynamics, may be recoverable with upgrades
Consider impacts to OCGT and CCGT performance including:	
Power	Full load derate likely (Nox/combustion dynamics)
Efficiency (across full load range)	Corresponding reduction from full load derate
Emissions (CO2, NOx, CO) (across full load range)	Like for like, small increase in Nox, managed by derate. CO at SEL unaffected (theretically may improve)
Reliability	Risk of trips/deloads if combustion stability worsens
Availability (linked to maintenace on components, e.g valves)	First applications expect increased monitoring/inspections
Flexibility	Some effect expected (start/shut down & fuel variation)
Consider impacts to OCGT and CCGT performance including:	
Start up time (if H2 are added to gas grid)	Start up on NG/conventional fuel only. H2-blend startup believed possible, but needs verification
Shut down time	Shutdown on NG/conventional fuel only.
Load gradients (ramp rates)	No effect
Turn up (Pmax)	Some impact, may be recoverable with upgrades/mods
Turn down (Pmin)	No effect
Impact of natural gas composition on allowable H2 %vol (i.e. C2+ %vol)	Increasing C2+ can reduce amount of acceptable H2
Impact of hydrogen gas quality on allowable H2 %vol (incl. Impurities)	H2 quality not yet assessed, assumed to be pure H2
Impact of fuel variability (i.e. changing levels of H2 content)	slow' blending rate of H2 (1%/min)
Acceptable rate of change of fuel quality/variability	As above, and compliance with normal fuel spec
Grid code compliance / frequency response	No effect expected

Summary

- Uniper is committed to being Net Zero in European Operations by 2035
- Exciting challenge to our Gas Turbine Fleet
- Three decarbonization technologies being pursued H2, CCUS & Biofuels
- Hydrogen to Power in Gas Turbines Operational Assessments include
 - Process Safety, Maintenance & Life Management, Performance and Flexibility
- Blends of H2 with NG are possible but there are operational impacts to be managed

