

Performance Untapped Modulation for Power and Heat via Energy Accumulation Technologies

PUMP-HEAT project

Flexible Combined Cycles for the future RES-based Energy Market

Speaker: Stefano Barberis – Alberto Vannoni RINA Consulting SpA - University of Genoa, Italy

17th March 2021

Start Date: 1st September 2017 **End Date:** 31st August 2021

This Project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement N. 764706

PUMP HEAT Main Challenge

Combined Cycle Gas Turbine (CCGT) are facing **highly demanding efficiency and flexibility requirements** and often they are not profitable enough to avoid mothballing or closure **Heat pump integration in CCGT** is as an opportunity to make CCGT the **bridging technology to a decarbonized economy** but they must win the following main challenges:

- Enhance the **plant flexibility** and **overall efficiency**
- Be techno-thermo-economically viable compared to already known solutions

PUMP-HEAT in a nutshell

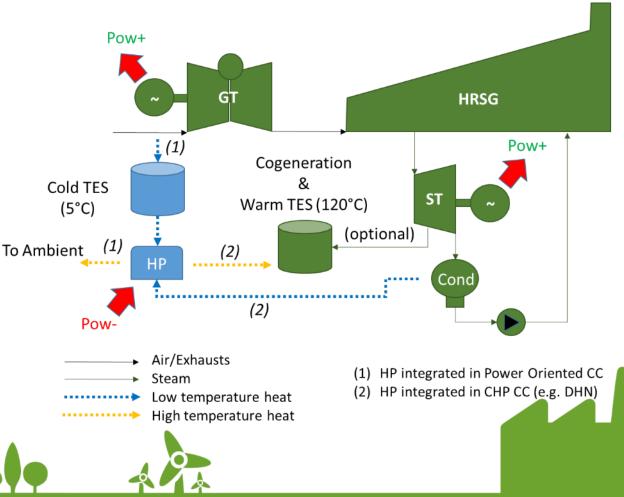
THE NEED: Gas Turbine (GT) OEMs and energy utilities look for <u>power flexibility</u> especially for CHP Combined Cycles (CC), constrained by thermal demand, hence providing limited grid services.

THE IDEA: PUMP-HEAT proposes an innovative concept based on the <u>coupling of CCs</u> with a fast-cycling highly efficient **Heat Pump** (HP) equipped with **Thermal Energy Storage** (TES).

The integrated system features an **advanced control** concept for smart scheduling:

- <u>the HP modulates power</u> to cope with the CC reserve market constraints;
 - the high temperature heat can be exploited in the district heating network (DHN);
 - the low temperature cooling can be used for gas turbine inlet cooling.

The CC integration with a HP and a cold/hot TES brings to a <u>reduction of the Minimum</u> <u>Environmental Load (MEL)</u> and to an increase in <u>power ramp rates</u>, while enabling <u>power</u> <u>augmentation at full load</u> and increasing electrical grid resilience and flexibility.



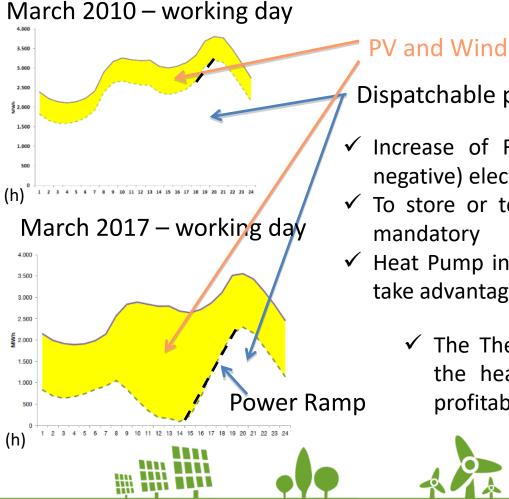
PUMP-HEAT concept overview

- Heat Pump (HP) as a smart electrical load
- HP may allow CC to sell grid services also when the CC is off
- HP will impact on the GT inlet air, reducing P_min and augmenting P_max as required
- HP can produce useful heat for DHN, displacing auxiliary boilers
- HP will also increase the CC average annual efficiency

PUMP-HEAT Consortium

PUMP-HEAT

an Industry-driven Consortium

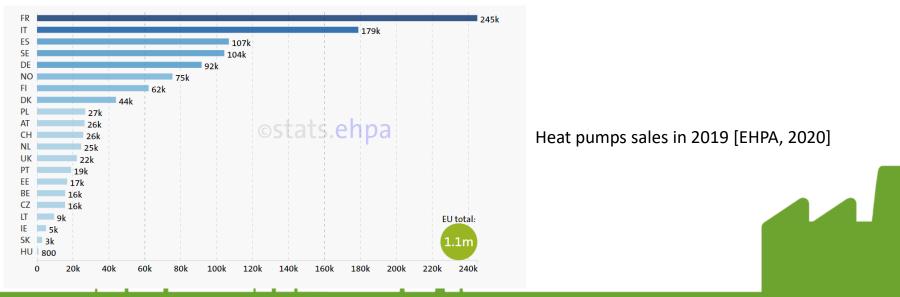

This guarantees:

- Industrial and Market interest to project outcomes
- Involvment of wide range of stakeholders
- Strong commitment to PHCC realization
- A common «project business» to be pursued made by «different actors' business»
 - Ability to overcome contingencies

Why use a Heat Pump for CC flexibility?

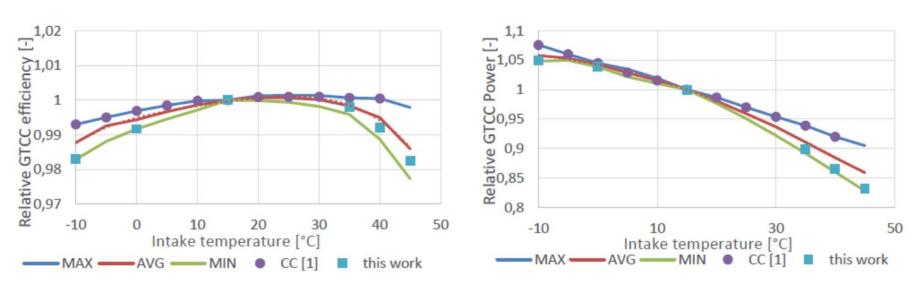
Renewable share increase

Dispatchable power


- Increase of Renewable production increased low (or negative) electricity price period
- \checkmark To store or to use excess of Renewable production is mandatory
- ✓ Heat Pump integrated with Thermal Energy Storage can take advantage of this trough a **PowerToHeat approach**
 - ✓ The Thermal Energy Storage allows to use the heat when is most beneficial to CC profitability

Why use a Heat Pump for CC flexibility?

- To store or to use excess of Renewable production is mandatory in <u>every energy market</u> Heat pumps enable the **PowerToHeat approach**
- ✓ The Thermal Energy Storage allows to use the heat when is most beneficial to CC profitability
- ✓ In cogenerative applications, the Heat Pump may displace fossil-fuelled auxiliary boilers
- ✓ France and Italy are the largest EU markets for heat pumps


European Turbine Network 4th

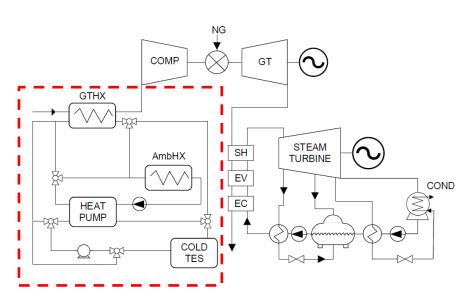
CCGT Power

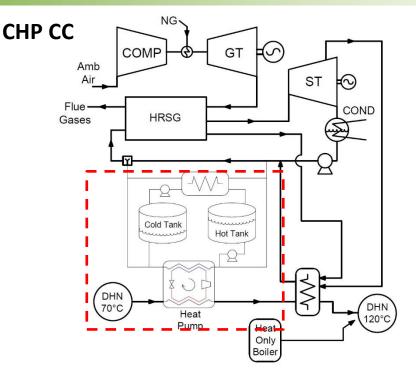
Why use a Heat Pump for CC flexibility?

Open literature curves and Authors' calculations were compared with the Combined Cycle correction curves on temperatures for the OEM F Class GT frames (e.g. AE94.3A, GE9F, SGT5 4000F such as simple cycles and AEGT26 such as reheat cycles), extracted by the GT PRO.

Analysis of a Combined Cycle Exploiting Inlet Conditioning Technologies for Power Modulation, ASME TurboExpo 2019, ASME paper GT2019-91541

CCGT Efficiency

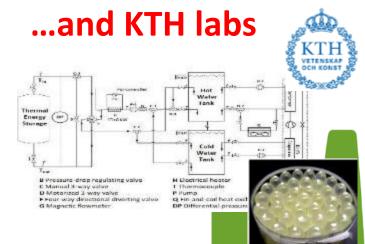

European Turbine Network 4th



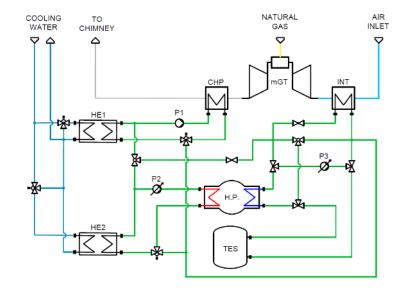
Two Cycle Layouts: Power Oriented and CHP Combined Cycles

Power Oriented CC

Different role of HP+TES System – different role/flexibility offered on the electric market.


A demonstration-to-market approach, as excellence for Research Innovation Actions

Demonstration at IREN Moncalieri CHP CC (+District Heating)

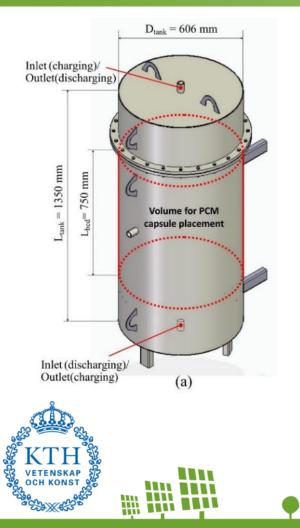

Review Meeting - 14th May 2019 -

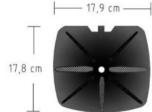
PUMP HEAT Validation site @ UNIGE

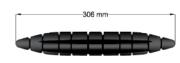
Project Validation site, placed within Tirreno Power power plant, Savona (Italy)

- ➤100 kW_e micro gas turbine
- ➢ Fast response HP, 10 kW_e

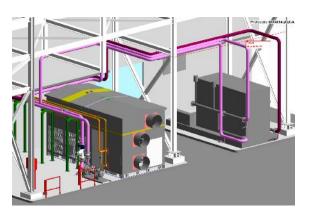
111


Cold thermal storage, 100 kWh, T range -5°C to +5°C


PUMP HEAT Validation site - Lab Scale Warm Thermal Storage @ KTH

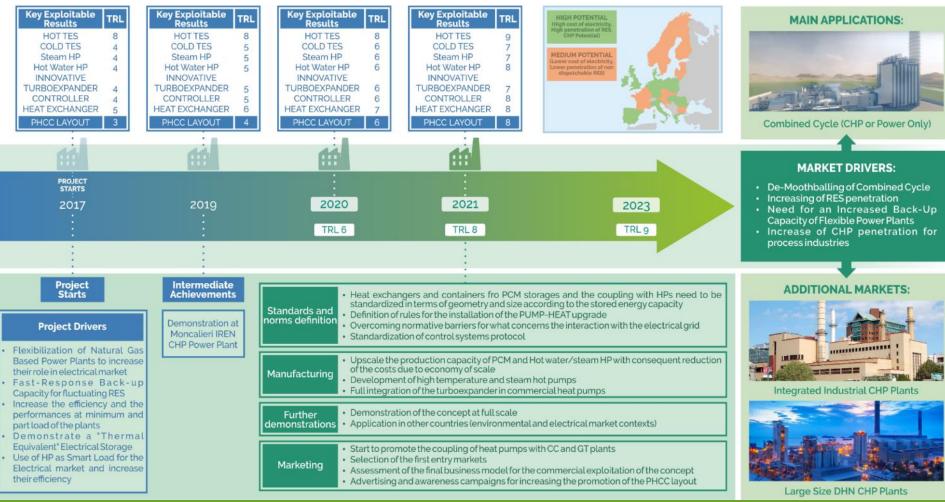


- Two thermal storage configurations:
- Shell-and-tube heat exchanger
- Macro-encapsulation
- Volume of tank chamber=0.2 m3



PUMP HEAT Demonstration site @IREN

Iren


Project Demosite is settled within an IREN facility in Moncalieri power plant (Italy), a 400 MW_e CHP
Fast response HP, 150 kW_e

Warm Thermal storage, 360 kWh, temperatures up to 120 °C

A demonstration-to-market approach, as excellence for Research Innovation Actions

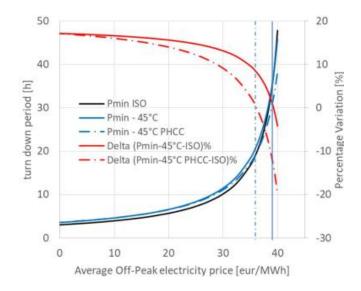
Power Oriented CCGT

Be technically feasible:

- Heat Pump with R600 (Butane) as a working media: advanced technology HP can lead to high COPs thus better impact on all thermo-economic indexes.
- **TES size/technology and costs**: recent studies demonstrate how TES is a key enabler for HP successful integration into PO CCGTs
- Plant operation scheduler optimizer is a must to properly manage the operation modes (TES charging/discharging, continuos cooling/heating) in todays and future complex market scenarios

Be thermo-economically viable:

- The thermo-economic analysis is a challenging task due to the **unpredictability of the Ancillary Service Market** (ASM). To increase profitability from ASM:
 - Reduce Minimum Environmental Load (MEL) to increase turn down period and availability for ASM
- Reduce emissions and O&M costs:
 - Reduction of intraday shutdown/startup: a hot pressurized start-up has a costs of ca 24,2 keur and > 100 tons of CO2 and can be economically replaced by a turn-down period
 - Reduce components life consumption due to shutdown/startup


Power Oriented CCGT

Minimum Environmental Load (MEL) reduction enhances the profitability:

 Remain available for Ancillary Service Markey (ASM) thanks to increased turn down period

Parameter	Unit	Δ	Δ%
Inlet Temperature	[K]	30	10,4
Gross Power	[MW]	-30,1	-15,9
Gross Efficiency	[pt%]	-0,75	-1,50
Net Power	[MW]	-32,7	-17,3
Net Efficiency	[pt%]	-1,55	-3,10
Thermal Input (Fuel)	[MW]	-55,6	-14,7
CO2 Emission	[tonCO2/h]	-11,2	-14,7
Net Specific CO2 Emission	[kg CO2/MWh]	13,0	3,20

Adopting the HP increases the turn down duration even at lower el. price [eur/MWh] compared to existing solutions

Avoid the emission related to start up procedure the start-up impact over component aging

pollutant	u.m.	Hot P	Hot SU	Warm	Cold	SD
		SU		SU	SU	
CO2	ton	78,6	108,0	127,7	196,4	19,5
NOx	kg	49	68	127	254	18
CO	kg	528	726	794	998	68

For each avoided SU/SD procedure is possible to avoid ca 98 tons of CO2, ca 67 kg of NOx and ca 596 kg Carbon Monoxide

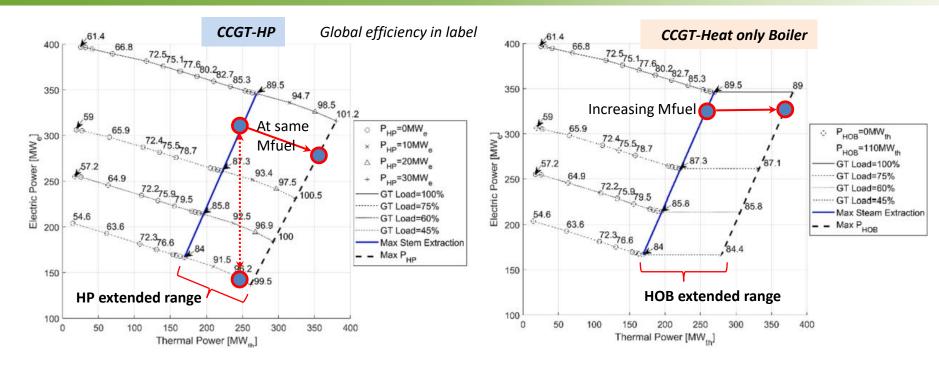
Combined Heat and Power (CHP)

Be technically feasible:

- **Retrofit** applications constraints **limit the performance** enhancement of the HP concept
 - Minimum steam flow rate for the LPT (we cannot extract too much steam).
 - Minimum exhaust temperature at stack to keep sufficient buoyancy effect to increase pollutant dispersion
 - Avoid exhaust gas condensation (acid condensate)
- New unit: best performance enhancement with flue gas condensation
 - Imposes a particular layout configuration
 - Reheating of flue gas must be considered after the latent heat exploitation to guarantee minimum stack Temp
 - Flue gas condensing system is a technical challenge itself

Be thermo-economically viable:

- The key enabler is the capability to **uncouple GT load and thermal energy** production
- High capital expenditure for large size heat pump (ca. 10 times more than HOB) restricts the market conditions under which the value of the investment is positive.
- ASM participation is the best scenario for HP integration profitability. Strong presence of renewable generators will bring HP integration NPV much higher than today.



Combined Heat and Power (CHP): Uncoupling GT load and thermal energy production

The CCGT-HP allows to provide the same additional heat without increasing the fuel consumption

A demonstration-to-market approach: interacting with stakeholders is crucial!

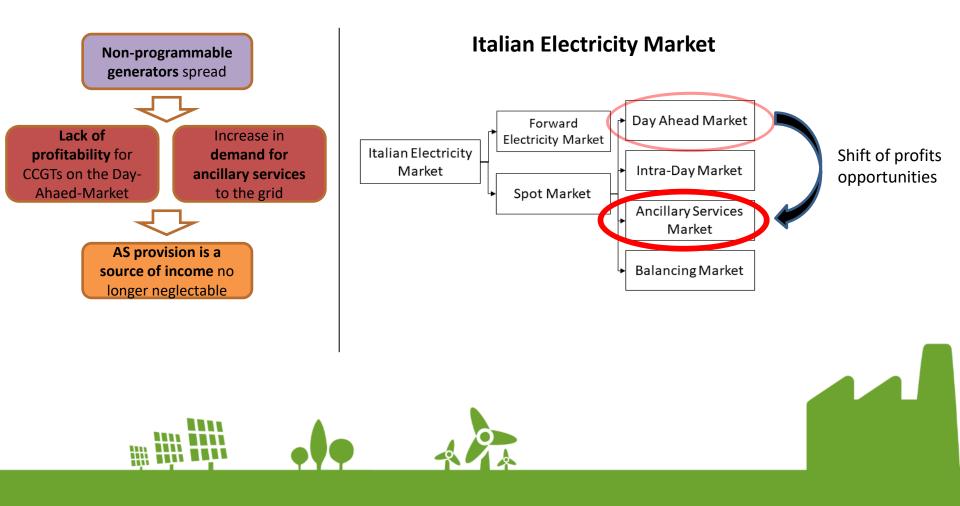
FOLLOW OUR ACTIVITIES ON

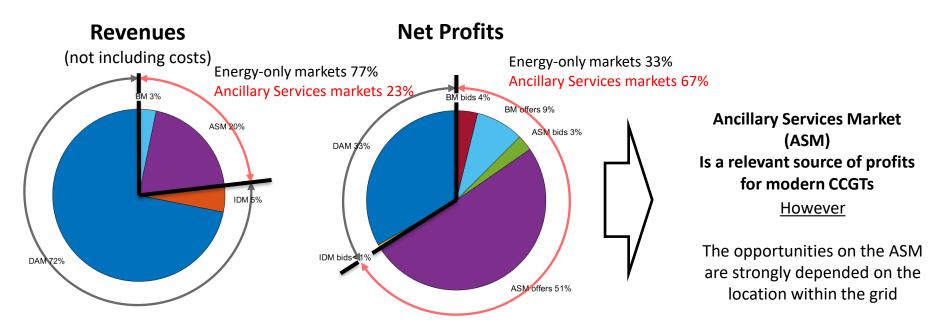
www.pumpheat.eu

PUMP-HEAT WP6 ACTIVITIES

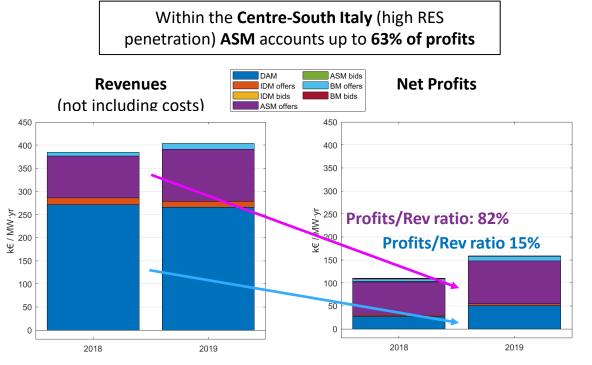
Interaction with stakeholders via web surveys and "key bilateral interviews" with plant manager

Replication studies


Setup of a Techno-economic Roadmap to TRL9 also identifying most relevant EU markets where CCGT-CHP are active and where <u>ancillary services market</u> is remunerative and RES penetration is high

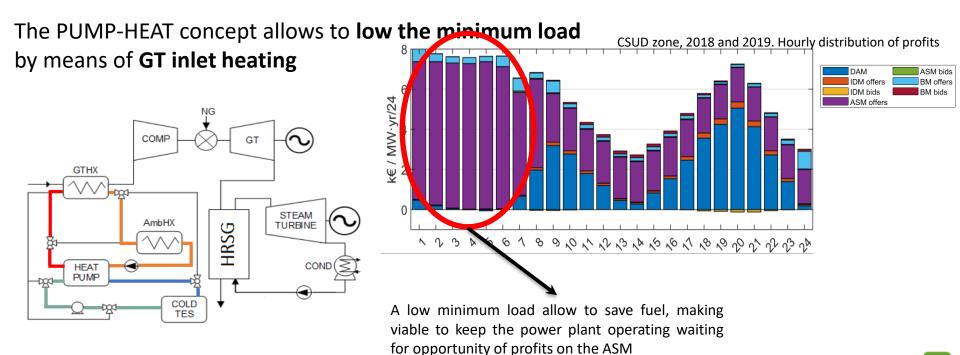

Ancillary Service Profitability

Ancillary Service Profitability


Analysis carried out on 45 Italian power-oriented CCGTs considering 2018 and 2019

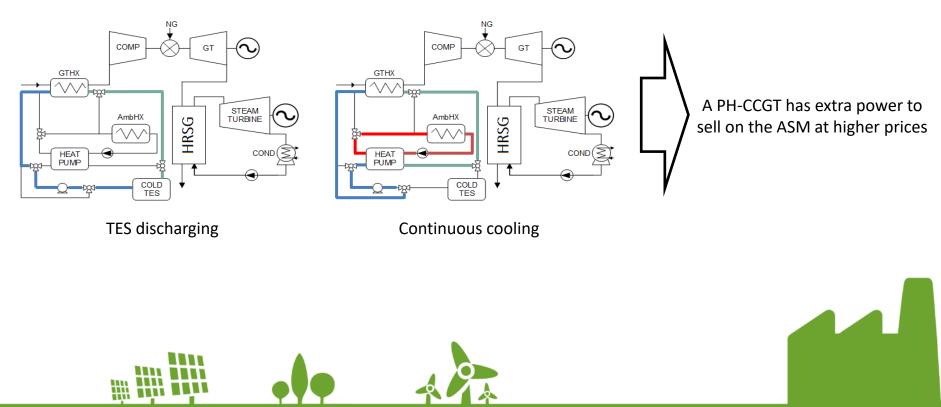
South-Centre Italy Focus

Low Rev/Profits ratio on the DAM

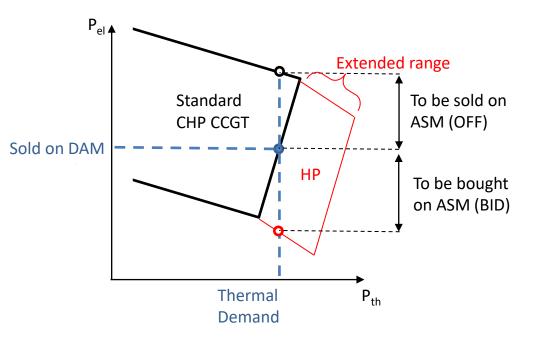

- CCGTs accept low economic margin on DAM, even negative, to be able to participate on the ASM
- Considerable Profits/Rev ratio on the ASM: higher prices for energy

111

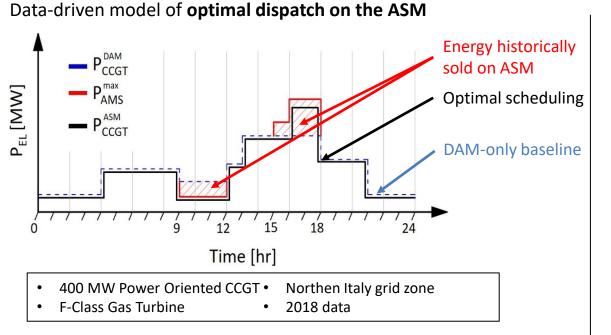
PUMP-HEAT PO LAYOUT IN THE ANCILLARY SERVICES MARKET



PUMP-HEAT CHP LAYOUT IN THE ANCILLARY SERVICES MARKET


The PUMP-HEAT concept allows to **increase the maximum power output** by means of **GT inlet cooling**

PUMP-HEAT CHP LAYOUT IN THE ANCILLARY SERVICES MARKET



- CHP must fulfil the local thermal demand
- Whit high thermal demand the minimum power output increases
- So is the <u>ability in providing Ancillary Services is</u> <u>limited</u>
- <u>HP</u> operative-range extension allows to <u>decrease the minimum power output</u>
- <u>The TES gives extra-flexibility</u> mitigating the thermal demand peak

Economic Impact Assessment of PUMP-HEAT PO layout

+3% in profits with the PUMP-HEAT concept

PUMP-HEAT power-oriented retrofit KPIs:

- NPV=1.42M€*
- PBP=12.9yr*

*Interest rate 5%

Would you like to support PUMP-HEAT?

THANKS FOR YOUR TIME

<u>Stefano.barberis@rina.org</u> <u>Alberto.Vannoni@edu.unige.it</u>

