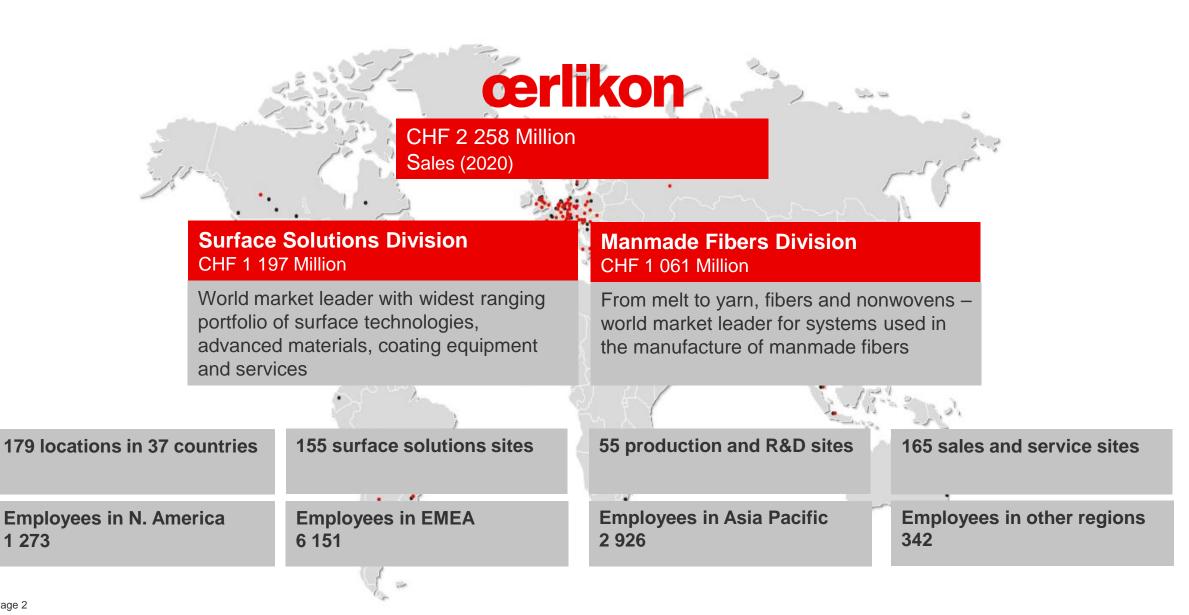
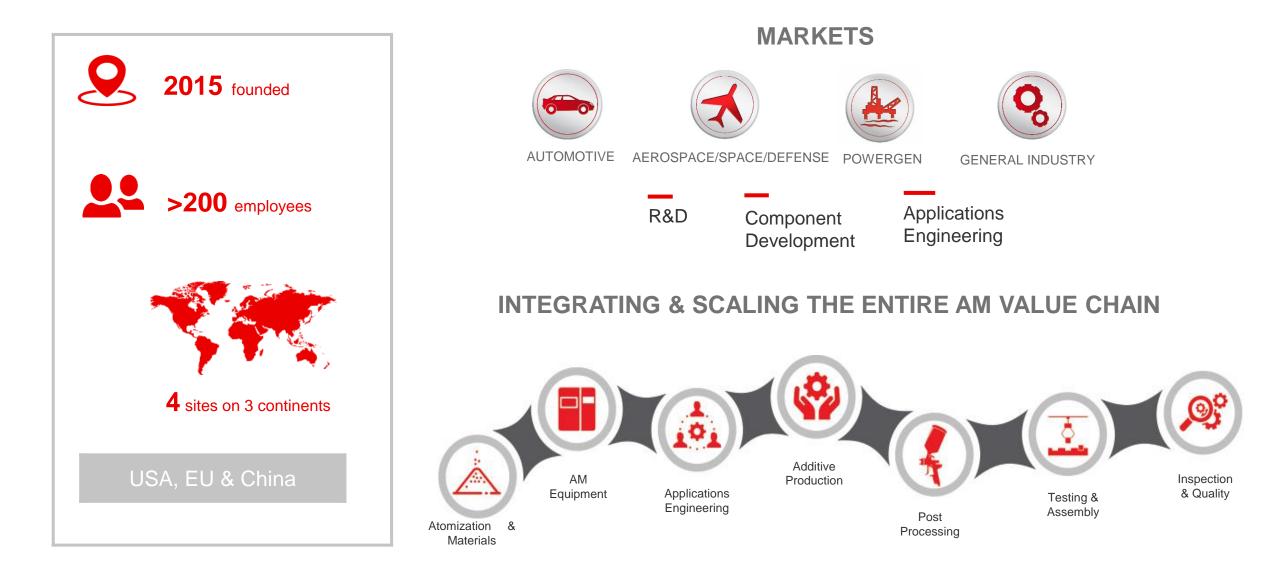
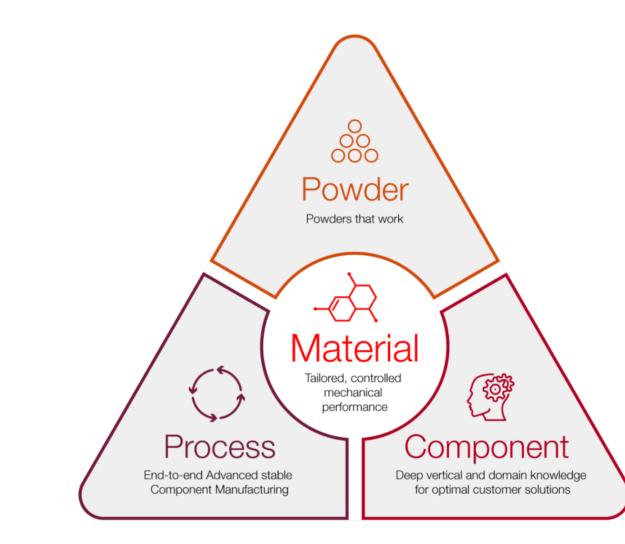
Material data and qualification for AM Oerlikon AM


Mikkel Pedersen, Head of AM R&D, Oerlikon March 18, 2021


A Leading Global Presence to Serve our Customers Locally



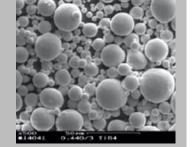
Global product development and manufacturing partner – enabling our customers to break performance barriers

The challenge of qualifying the material in AM

 The complexity of each of the individual elements defining the material and the interconnectivity

œrlikon

am


- Lack of industry data available compared to traditional manufacturing processes
- Material created using AM belongs to a new material group
- New material evaluation capability
- AM is in a transition from prototyping to large scale series production

Powder

What is needed:

- Mature and robust supply chain and supplier management
- Relevant sourcing and in-use specifications
- Robust handling and storage processes and equipment

What are the challenges:

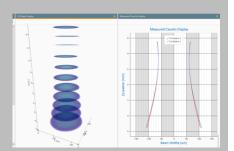
- Production environment and the volume
- Powder in-use cycle
- Material segregation and cleanliness
- Traceability & Quality control

To Blend or not to blend

Decisions made in the powder handling drives quality control

- Powder sampling process
- Powder quality control with relevance to the process
- Hall flow testing
- Environment
- Drying powder

Process

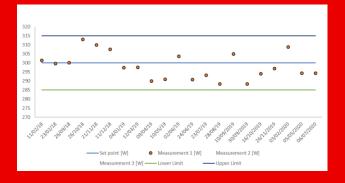


What is needed:

- Acceptable ranges of variation for key process parameters
- Standards and specifications for machine qualification, accreditation and operation
- Thermal post processing matching the microstructure

What are the challenges:

- High number of process variables, many of which are not independent
- Quality control and monitoring of KPVs
- Fast development and 'black box' technology
- Variability: Spatial, build-to-build, machine-tomachine


Process control

'Normal' machine performance

- Sub-system performance
- Bridging the gap machine-tomachine
- Monitoring capability

- Sensors and measurement techniques
- In-situ monitoring

Statistical process control

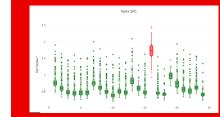
Component

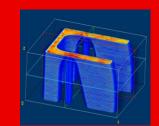
What is needed:

- Design or material allowables / target values
- Process parameters relevant for the application, geometry or feature
- Defect/artifact acceptance criteria

What are the challenges:

- Material and component are created at the same time
- NDI capability
- Influence of geometry and e.g. surface area, support structure


Application requirements

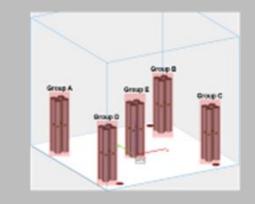

Defect/artifact acceptance criteria

- Can it be the same as for other manufacturing processes?
- What is unique to AM

NDI

- Probability of detection
- In-process monitoring as NDI

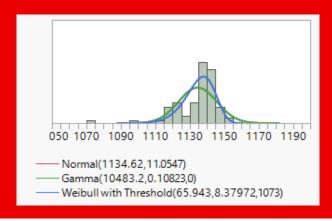
Material



What is needed:

- Understanding of key failure mechanisms and material artifacts
- Standards and specifications for qualifying materials
- Material data available to industry

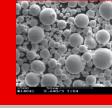
What are the challenges:


- New material artifacts from AM
- Recreating relevant and realistic artifacts in material testing
- Material testing and detectability
- Speed of material development
- Variability / combining data

Testing and data analysis

Coupon geometry

- Single specimen preforms or multiple specimen blocks
- Machined/Unmachined
- Material failure mechanisms
 - Creating or seeding of defects
- Data populations and combinability



What Oerlikon is doing to address these points

Process

Powder

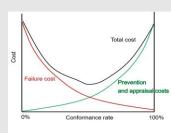
- Powder specifications (sourcing and In-use)
 - Defining key characteristics
 - Tracking and testing changes of powder in-use
 - Developing testing methodologies
- Powder handling
- Processes and in-use cycles
- Equipment
- Batch tracking and traceability
- Working with our internal powder producers to optimise the products for AM

- Statistical process control
- Process parameter tolerances and natural variability
- How to track or measure parameters
- Machine and process qualifications
- Machine critical items
- Sub-system performance
- Maintenance, calibration and health checks
- Meeting requirements from new standards
- Heat treatment and HIP optimisation

- Developing parameters for specific applications
- Increase productivity
- Increase quality and microstructure
- Improving surface finish
 - Within the AM process
 - Post-processing

- Evaluating physical and mechanical properties
- Developing understanding of microstructure and artifacts
- Definition and detectability of defects in AM
- New alloy development
- Modifying existing materials to enable or improve performance when printed
- Novel material development e.g. High Entropy Alloys

Where Oerlikon would like more collaboration within the industry



Industry material performance targets

- Turbomachinery is an ecosystem consisting of many different players with different interests and needs for their applications can be organised in subgroups
- Define a new material class that is AM and define the benchmark(s)
- Combine the single interests to create a larger market/voice and drive it through industry standards

Industry standards

- The route to qualified material and allowables is by addressing variability which is best addressed through common standards and processes
- Enables broad application of the data we create rather than single customer and increases the pool of combinable and comparable data available
- Means of introducing well-known and established processes from industry
- Challenge todays proprietary vs. commodity type technology path

Roadmap for Materials

- Part substitution is the main business today so here the materials are expected to look and perform the same
- Next generation parts will be designed for AM which includes new use of materials (functionally graded, variable density etc.)
- Novel material development and adaption to process
- Defining new processes for material evaluation and part certification

Close to you – Anywhere in the world

THANK

YOU.

19