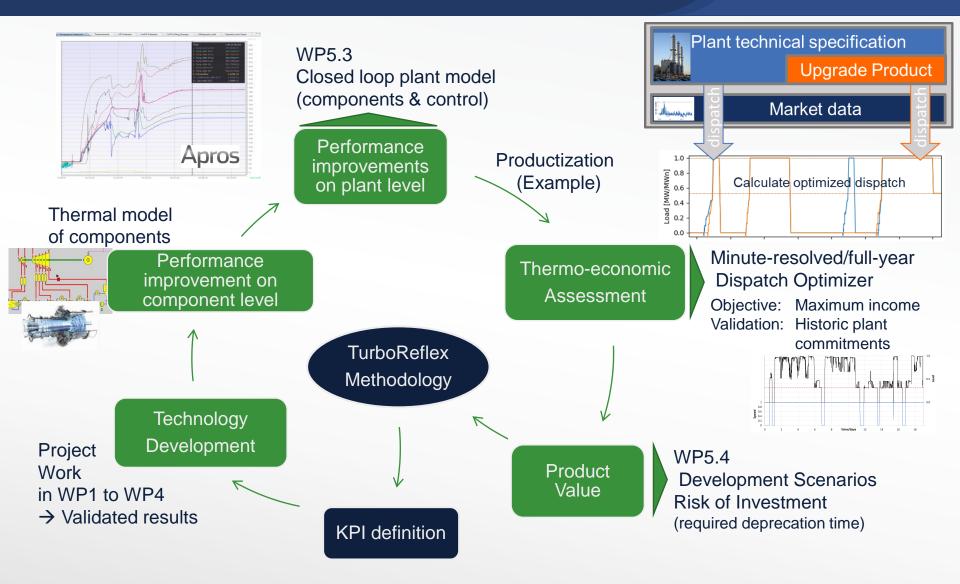

Assessing the impact of component innovations and improvements at plant level - Wolfgang Mohr, GE Switzerland

"TURBO-REFLEX. TURBOmachinery REtrofits enabling FLEXible back-up capacity for the transition of the European energy system"

Intermittent use of CCGT/Conventional power plants

TurboReflex: Preliminary classification of technologies per KPI

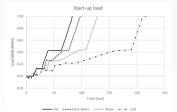
- Service application (TRL>4)
 - Retrofits
 - Upgrades (Components/Control)


Reference power plants

- F-class CCGT
- 500MW conventional

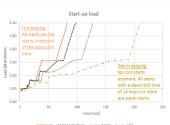
ID	Project	Description	Minimal load	Ramp rate	Part load efficiency	Cycle cost	System	Effect on PP performance
1	T1.1(GE)	Compressor end wall design for larger operability	✓		✓		GT	YES
2	T1.2 (AEN)	Compressor blow off extraction design	✓				GT	NO
3	T1.3 (MH-UK)	Compressor performance and operability during charging	✓				GT	YES
4	T2.1 (SIE)	Gas turbine combustor with enhanced load flexibility	✓	√			GT	YES
5	T2.2 (MH-UK)	Combustor stability during charging and discharging	✓	√			GT	YES
6	T2.3 (AES)	Advanced turbine cooling schemes		✓	✓	✓	GT	YES
7	T3.1 (MAN)	Robust mechanical design (burst speed, LCF,)	✓			✓	GT	NO
8	T3.2 (DSPW)	Steam turbine – blade vibrations	✓				ST	NO
9	T3.3 (DSPW)	Steam turbine – thermal loading		✓			ST	NO
10	T3.3 (SIE)	Exploitation of stretched design limits for flexible and cost-effective plant operation	√				ST	NO
11	T4.1 (MAN)	Condition and efficiency monitoring system		✓		✓	PP(GT)	NO
12	T4.2 (DSPW)	Steam turbine monitoring system	✓	✓		✓	ST	YES
13	T4.3 (GECH)	Power generation analytics	✓	✓	✓	✓	PP	YES
14	T4.4 (SIE)	Machine learning on large heterogeneous data sources for optimized operation		√		√	PP	NO

WP5: Assessing technology impact

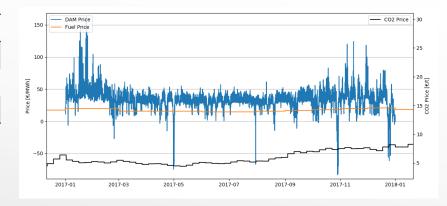

Example: Subtask 4.3.1 WSC preservation

Plant technical specification

- Reference plant: F-class CCGT
 - Start-ups & shutdowns
 - Maintenance cost
 - Operation cost



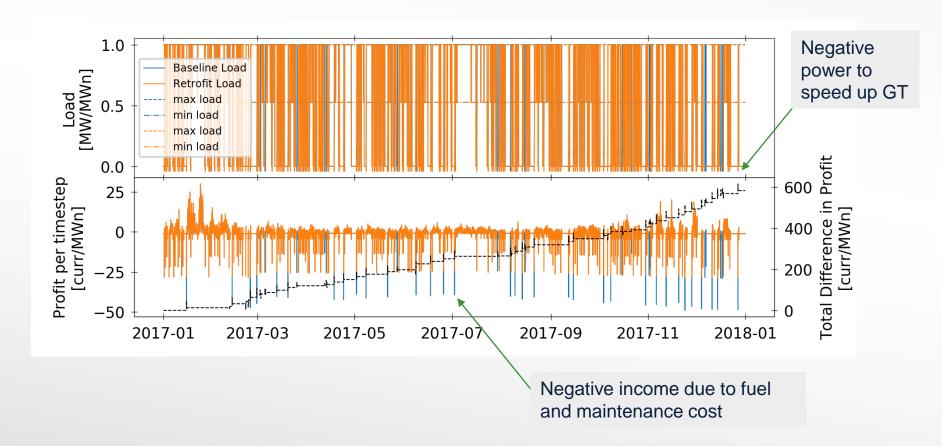
Upgrade Products


enabled by technology

- Warm keeping of ST
- Hot keeping of ST

Market data

Market	Name	Resolution	Period
Electricity	Day ahead market (DAM)	1 hour	2017
Fuel	Natural Gas Prices Europe	Monthly	2017
Emissions	EUA	Weekly	2017


Example: Subtask 4.3.1 WSC preservation

Result of an optimized dispatch

Orange: Retrofitted power plant

Blue: Baseline power plant

Example: Assessment results in 2017 markets

Germany	Increase in profit [€/MWn/a]	Capacity factor [%]	Hot	Hot- warm	Warm	Cold	Low load
Baseline	0	49.1%	109	38	49	33	61
WSC Warm Keeping	582	48.6%	104	32	80	0	59
WSC Hot Keeping	1'633	48.0%	234	0	0	0	49

UK	Increase in profit [€/MWn/a]	Capacity factor [%]	Hot	Hot- warm	Warm	Cold	Low load
Baseline	0	94.7%	47	4	1	0	96
WSC Warm Keeping	0	94.7%	47	4	1	0	96
WSC Hot Keeping	34	94.7%	53	0	0	0	95

- Doth products reduce the start-up costs, saving fuel and O&M costs
- Upgraded power plants are sometimes operated, while it is not beneficial to start the baseline power plants, due to higher start-up costs
- Low load events of the baseline plant, are partially removed by start-stop cycles.
- More flexible operation due to shortened start-up time.

An OEM Consortium of 26 partners in 9 countries

Company:

GE Switzerland

Title:

Lead Engineer

Contact person:

Wolfgang Mohr

Phone:

+41 58 5065819

Email:

wolfgang.mohr@ge.com

