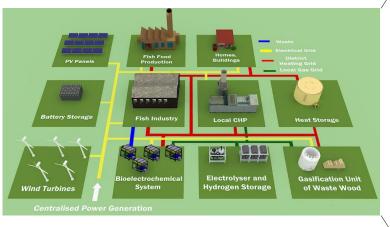
From waste to grid: re-using resources to achieve energy independence on islands

Waste valorization through Anaerobic Digestion Assisted by Bio-Electrochemical System (AD+BES) technology

EU GREEN WEEK 2021 PARTNER EVENT

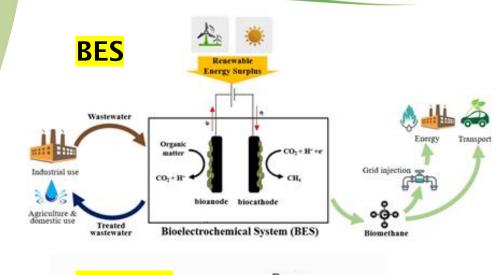

ZERO #EUGreenWeek POLLUTION for healthier people and planet

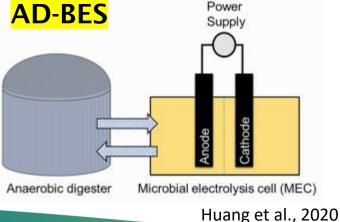
Daniele Molognoni, PhD LEITAT Technological Center (Spain) dmolognoni@leitat.org

<u>Keywords</u>

- Energy management system (EMS)
- Different energy vectors
- Islands decarbonization
- Industrial symbiosis
- Waste valorisation

Oxygen recovery - For sale (to be reused in future) Protein Industry Industry Home Excess electricity Mainland power Waste heat recov. Organic Excess Electrolysis ~810 MWh/year matter in electricity Local electrical grid Industrial symbiosis liquid Electricity Thermal grid waste ~9000 ~50t/year MWh/year Fossil fuels Industrial Process steam Heat vmbiosis ~26500 MWh/year /act/ ~5000 MWh/year Steam Biomass: Wood ~4000 t/year AD-BES CHP storage Renewable fuels boiler Gasification Hydrogen LNG Blockchain ~2100 Bio-~19400 Syngas ~9000 MWh/year methane MWh/year MWh/year


EU GREEN WEEK 2021 PARTNER EVENT



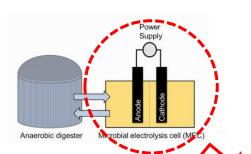
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 957752

The ROBINSON concept applied on Eigerøy Island (Norway)

- Bioelectrochemical system
- Electro-active bacteria
- Wastewater treatment
- Storage of renewable energy surplus
- Potential improvement of <u>fermentation processes</u>

EU GREEN WEEK 2021 PARTNER EVENT

- Improving anaerobic digestion process
- Reduction of CO₂ emissions related to waste treatment
- Production of biomethane as energy vector
- Technology integration into ROBINSON EMS



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 957752

Huang Q et al. A critical review of microbial electrolysis cells coupled with anaerobic digester for enhanced biomethane recovery from high-strength feedstocks. Critical Reviews in Environmental Science and Technology 2020:1–40.

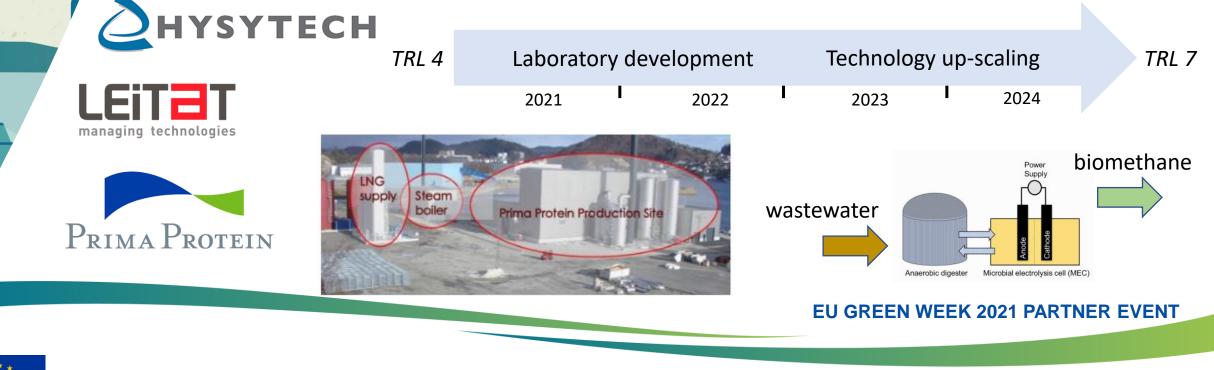
- Robinson
- Conversion of liquid waste from fish industry into biomethane by AD-BES
- Energy conversion efficiency around 70%
- Biogas production of 0,9 m³ m⁻³_{reactor} d⁻¹, with CH₄ content > 95% (def. biomethane)

- Side-stream BES
- Modular system
- 3D-printed metallic electrodes (SS, Ti, alloys)

Laboratory objectives:

- Electrodes' materials and geometry optimization
- Best electrical connection for the BES stack
- Waste treatment capacity
- Microbial community characterization

Ceballos et al., 2020


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 957752

Ceballos-Escalera A et al. Bioelectrochemical systems for energy storage: A scaled-up power-to-gas approach. Applied Energy 2020;260:114138.

The AD-BES is expected to be <u>up-scaled up to 1 m³ scale</u>, achieving the following:

- Treatment of fish industry wastewater (PRIMA Protein AS, Eigerøy)
- Electrical current demand up to 20 A m⁻² electrode
- Power density up to 1 kW m⁻³ reactor
- Confirming biomethane productivity of 0,9 m³ m⁻³_{reactor} d⁻¹ with a purity > 95%

From waste to grid: re-using resources to achieve energy independence on islands

Waste valorization through Anaerobic Digestion Assisted by Bio-Electrochemical System (AD+BES) technology

EU GREEN WEEK 2021 PARTNER EVENT

ZERO #EUGreenWeek POLLUTION for healthier people and planet

Daniele Molognoni, PhD LEITAT Technological Center (Spain) dmolognoni@leitat.org