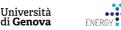
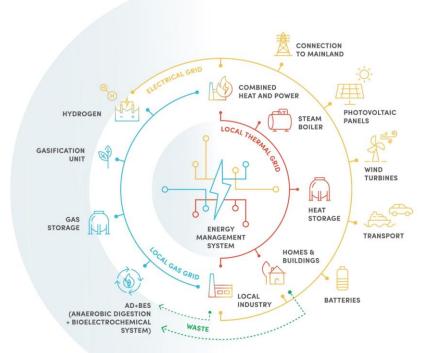


ROBINSON in a nutshell

ROBINSON aims to help decarbonize (industrial) islands by developing an intelligent, robust and flexible energy management system that integrates technologies across different energy vectors (electricity, heat and gas).


The ROBINSON system will be **demonstrated** on the island of Eigerøy, Norway.

Virtual demonstrations will be conducted for **Crete (Greece) and the Western Isles** (Scotland).



Main Goal

- Development of an integrated energy system tailored to islands with industrial activities. A flexible and modulable system that can answer to the different needs of the environment.
- Couple locally available energy sources, electrical and thermal networks and innovative storage technologies, thus increasing energy efficiency and security of supply.
- **Technological innovation:** development and demonstration of several new technologies that will unlock new energy sources and a new energy integration system.
- Cover the energy demand while reducing the use of fossil fuels and the islands' emissions.

Project Objectives

Optimise, validate and integrate innovative technologies

Technological

Develop and validate a modular and flexible Energy Management System (EMS)

Demonstrate the large-scale applicability of the ROBINSON system

Demonstration

Replication of the modular EMS and the concepts

Replication

Wide dissemination

Human health and the environment System cost-competitiveness Business model

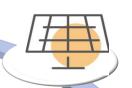
Impacts

Technological development

The Energy Management System will integrate the

existing system with new

The key element of the ROBINSON project is the development, adaptation and demonstration of different technologies.


The innovative Wind Turbine will be low cost, more efficient and socially acceptable.

AD+BES

Battery

PV Panels

CHP

installed distributed technologies and end-users across different energy

vectors (electricity, heat and gas)

The Anaerobic Digestion + Bio **Electrochemical System will** allow to efficiently treat the process wastewater from Eigerøy island fish industry and convert its organic matter into biomethane.

Wind Turbine

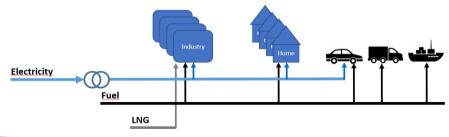
PEM+ H2 storage

The Combined Heat and Power system will be an advanced gas turbine with a combustion kit upgraded to burn hydrogen

Gasifier

and syngas.

The demo island



ROBINSON's demo case will be developed on the island of Eigerøy, in Norway.

Eigerøy's current energy profile

Electricity: ~100% is imported from the mainland with minor share of wind and solar. (Eigerøy is connected to the mainland by an undersea cable: average load 7,9MWh/hour, peak demand 18,5MWh/hour)

Thermal: 6950 MWh liquid fuel; ~ 26500 MWh/year LNG

Basic facts		
Size	20 km ²	
Population	~2500 (about 800 households)	
Climate	Relatively high temperatures in winter and low in summer; relatively high wind speed	
Industrial profile	A new fish industry has been implanted in January 2019, increasing the island's need for electricity and steam. Moreover, new industries are to be established in the next years; they will increase the island's energy demand and require an upgrade of the existing energy system.	

Follower islands

Crete - Greece

Basic facts

Electricity generation	≈3TWh in 2018 (≈80% -> 3 fossil fuel power plants);
RES penetration	17% Wind; 4,6% Solar; 0,01% Hydro; Bio not used
Interconnection	280MW by 2020; 1000MW by 2022
Industrial profile	2 industrial parks planned
Seasonality	Intense energy consumption due to tourism

ROBINSON'S CONTRIBUTION:

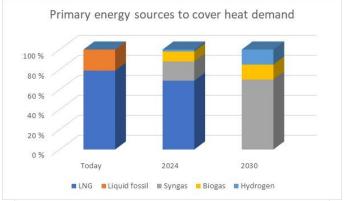
- Waste valorisation
- Energy storage
- Increase share of RES

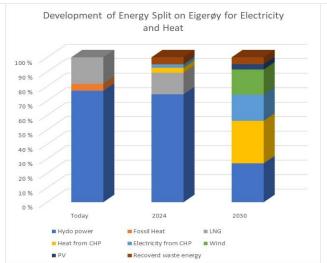
Western Isles - UK

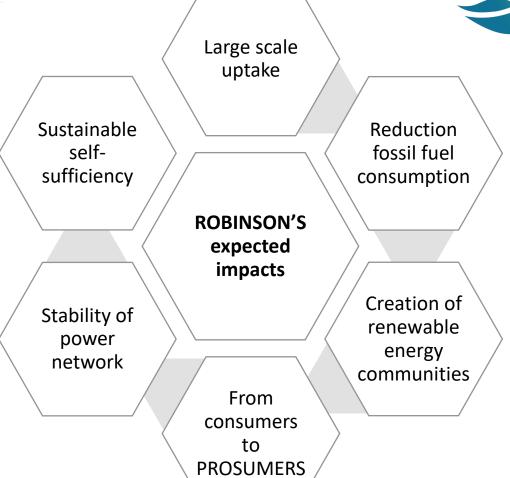
Basic facts

Electricity generation	778GWh in 2013
RES penetration	74GWh
Interconnection	AC subsea cable limited to 22MW
Industrial profile	Major industrial energy users on Isle of Lewis
Seasonality	5GWh back up power concentrated in July and Nov-Feb

ROBINSON'S CONTRIBUTION:


- Possible replicability of integration of onshore wind, storage and hydrogen production;
- Reduction of fuel poverty





Expected impacts

Environmental impacts (at 100% coverage)

Losses reduction
via integrated
management of
various DER
technologies

Increased clean fuel flexibility for CHP

Connecting ships to local electricity grid during usage of the harbour Waste valorisation

Reduction

discharge into

Up to 90% cut of CO2 emissions (100% for industry and 50% for transport)

> local costal water

Local use of wood **biomass** instead of export

Economic impacts

On Eigerøy: avoid expensive extension of transmission grid (6.1 – 12.2 M €)

Avoided CO2
taxes: potential
saving
400k€/year

Implementation

Costs savings and economic benefits

industrial symbiosis concept

Harvest otherwise wasted energy and supply

EU GREEN WEEK 2021 PARTNER EVENT

System costcompetitive in comparison to alternatives (e.g. batteries)

Reutilization of by-products such as oxygen

