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ABSTRACT 

Condition-based lifing methods have become more 

common for industrial gas turbines. Component 

temperature distributions are one key input into these 

advanced lifing methods, with analytical models used to 

predict these temperatures. These typically predict 

bounding temperatures, which do not accurately represent 

the variability in temperature that occurs in a turbine. As a 

result, there remains the potential for significant errors in 

predictions of component temperatures and significant 

pessimism in lifing assessments. The analytical models rely 

on a series of assumptions and are typically determined 

using the experience of thermal engineers and refined using 

experimental data. This process is time consuming, 

subjective, and does not give any indication of the potential 

error in the predictions. 

This paper presents an approach for systematically 

combining the judgement of experts with measurements. 

Prior distributions for each model boundary condition are 

determined using engineering judgement, and then refined 

using Bayesian Inference from the available measurements. 

This approach leads to a map of most likely temperature, 

uncertainty and variability across the component. The 

technique can potentially expedite the process of thermal 

model matching, make it repeatable, provide distributions to 

probabilistic structural calculations, indicate the ideal 

locations for additional measurements and predict the value 

of measurement campaigns. 

 

NOMENCLATURE 

𝑝(𝑥) Probability density function of a 

continuous random variable X taking a 

value 𝑥 

𝑝(𝑦|𝑥) Probability density function of a 

continuous random variable 𝑌 taking a 

value 𝑦, given variable 𝑋 takes a value 𝑥. 

𝑥𝑖 Numeric value associated with the 𝑖𝑡ℎ 

boundary condition of a thermal model, 

such as temperature or heat transfer 

coefficient. 

𝑦𝑗 𝑗𝑡ℎ Measured value during experimental 

study.   

 

INTRODUCTION 

Gas turbine components are historically designed based 

on an idealised operating cycle for the package, leading to a 

total number of operating hours, or maintenance cycles, that 

each component can withstand before replacement. 

However, the true operation of gas turbines can vary greatly 

depending on application, from continual part load 

operation, to frequent start-stop cycles. . 

As a result of this variation, the design cycle has to be 

conservative in order to bound all possible operation 

histories. The level of this conservatism is unknown at the 

point of manufacture, which leads to the potential that 

components are replaced when they could have safely 

operated for a number of further maintenance cycles. 

Condition based lifing assessments rely on real 

operating data from assets to predict the accumulated 

damaged and remaining useful life of individual 

components. Such condition-based assessments are gaining 

popularity as they can allow the lives of high-value 

components to be extended. 

Two key damage mechanisms for main hot gas path gas 

turbine components are creep-fatigue interaction (Green et 

al 2016, and Green et al 2019) and high temperature 

oxidation as these components typically spend the majority 

of their operating life at high temperature and under 

significant centripetal stresses. Prediction of each of these 

damage mechanisms require a good level of understanding 

of the thermal environment experienced by the component. 
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Condition based assessments are reliant on structural 

and thermal analytical models. The construction and tuning 

of these models can be expensive, time consuming, non-

repeatable and reliant on the judgement and experience of 

thermal and structural engineers. This paper aims to present 

an objective, repeatable method of model tuning, taking 

both measurement data and engineering judgement into 

account.  

Thermal models are generally created and compared to 

available test data, either at the peak steady-state condition, 

or transiently if data is available. The model boundary 

conditions are then modified using the judgement of an 

experienced thermal analyst in order to achieve a close 

match to available test data. This comparison is performed 

at discrete locations where test data is available, so there is 

potential that there is a spatial variation that is not captured 

by the model. There is also a level of uncertainty around the 

test data as the operating conditions may vary, or other 

potential issues associated with measurement campaigns.  

These effects combine meaning that there is a large and 

unknown level of uncertainty over the thermal prediction, 

and hence conservatism must be applied. Steps are taken to 

reduce this uncertainty, such as running multiple 

measurement campaigns or various thermal models. This 

paper will introduce a framework for the efficient and 

objective evaluation of these uncertainties. 

As this approach combines the uncertainty of the model 

and the uncertainty of the test data it can be used to 

determine the value of work, whether that is additional 

measurements or further modelling effort. The approach 

becomes even more powerful when combined with 

condition monitoring, as the continual gathering of real data 

can be used to update the models.  

 

APPROACH 

A thermal model of a gas turbine blade generally 

contains a number of boundary conditions, which are 

determined using various sources. Sources of boundary 

condition information include, but are not limited to: 

• 1D flow network solvers; 

• Computational fluid dynamics; 

• Empirical heat transfer correlations; 

• Engine performance models. 

Boundary conditions applied to the model include 

convective heat leads, windage, fluid mass flow, heat fluxes 

and others. Each boundary condition is applied transiently 

to the model either as a uniform value or as spatially 

varying. 

For example, the 1D flow network solver can be used 

to determine secondary cooling mass flowrates and 

convective heat transfer coefficients. This requires the flow 

path to be simplified to a series of connectors with 

geometrical approximations applied to each connector. 

Empirical correlations are then used to calculate pressure 

drop and mass flow rates. Heat transfer coefficients require 

an accurate estimate of the wall temperature.  

Each of these sources, and therefore applied boundary 

conditions, will have an uncertainty distribution associated 

with it. Current methodologies do not consider these 

underlying uncertainties, and instead boundary conditions 

are manipulated and modified to achieve a match to 

available test data. The level of modification can vary from 

simply factoring heat transfer coefficients to running flow 

network solvers at different conditions. This process of 

manipulation ignores any remaining uncertainty due to 

either the boundary conditions or the measurements and 

requires significant effort from experienced engineers. 

Typically this effort is replicated across multiple 

components, which can cause conflicts between the 

component and system level manipulations. If considered as 

a system then the level of match on each component may be 

poorer. If each component is considered independently then 

the combination of predictions could be unphysical. 

The approach presented in this paper aims to perform a 

probabilistic calculation to determine the likely values of 

the boundary conditions and the uncertainty in temperature 

across the component, taking any available measurements 

into account.  

The approach begins by defining initial probability 

distributions for all of the model boundary conditions, 𝑝(𝑥). 
These distributions are termed the “priors” and capture 

engineers’ knowledge about physically reasonable values 

for the boundary conditions. 

The priors are then refined by considering the available 

test data using Bayes theorem (Equation 1). This equation 

calculates a distribution of the boundary conditions given 

the measurements, 𝑝(𝑥|𝑦), termed the posterior. As 

additional measurements become available this process can 

be repeated to incrementally refine the distributions of the 

boundary conditions. 

The third term in Bayes theorem, 𝑝(𝑦|𝑥) is termed the 

likelihood and is defined as the probability of the 

measurements for a given set of boundary conditions. The 

final term, 𝑝(𝑦), can be expressed as an integral over values 

of 𝑥 (Equation 2) and hence becomes a normalising 

constant. 

 

𝑝(𝑥|𝑦) =
𝑝(𝑦|𝑥)𝑝(𝑥)

𝑝(𝑦)
 (1) 

 

𝑝(𝑦) = ∫𝑝(𝑦|𝑥)𝑝(𝑥)𝑑𝑥 

 
(2) 

To calculate the likelihood for a set of boundary 

conditions, 𝑥, the temperature at the measurement location 

must be predicted and compared to the measurement and its 

associated uncertainty. Characterisation of the posterior 

distribution requires this calculation to be performed a large 

number of times, which is impractical with the complexity 

of most thermal models (Zentuti et al 2017).  

A response surface is therefore developed for the model 

to ease computational burden. Response surface methods 

aim to fit a simplified model to the results of a set of full 
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assessments and then use a simplified model to predict the 

results for a sampled set of inputs (Cathcart et al 2019). 

 In order to generate this response surface, the 

analytical model must be run for varying input boundary 

conditions. For a highly complex thermal model like a 

bladed-disk assembly the set of inputs requires careful 

consideration, performing perturbations on groups of 

applied heat transfer loadings in a coherent manner. For 

example, if a secondary cooling mass flow is changed then 

the convective heat transfer correlation should also be 

changed by an equivalent amount. The thermal model is 

solved at steady-state conditions for a large number of cases, 

and temperature predictions exported for each. 

A response surface, or emulator, is generated from these 

sensitivity runs by determining the partial derivatives of the 

temperatures with respect to each boundary condition. 

Although the response surface is significantly less complex 

than the full simulation it is still infeasible to calculate an 

analytical expression for the likelihood or posterior 

distributions and hence Monte Carlo methods are used to 

describe the posterior. As the emulator only allows point-

evaluation of the likelihood and hence posterior probability 

density functions Markov Chain Monte Carlo (MCMC) 

method is used to sample all of the probability distribution 

functions. The random walk Metropolis-Hastings algorithm 

is used, which samples and evaluates points within the 

distributions, and walks through the distributions, 

prioritising moves towards more probable data. The 

application of the Metropolis-Hastings algorithm to the 

prior function is trivial, as the central estimate prediction 

can be used as a sensible starting point. However, in order 

to apply the algorithm to the likelihood and the posterior a 

simple optimization algorithm is first used to find a good 

starting point for the sampling process. A visualisation of 

the random walk optimisation is shown in Figure 1.  

 

 
FIGURE 1: VISUALISATION OF METROPOLIS-

HASTINGS RANDOM WALK ALGORITHM 

 

If the starting point selected for the posterior or 

likelihood is poor, the initial samples may not be 

representative of the desired distribution. Therefore, a burn-

in period consisting of the first 10% of sampled points is 

disregarded. A typical example of the negative log-

likelihood of during the burn-in and sampling periods is 

shown in Figure 2. 

An example set of prior, likelihood and posterior 

distributions produced by the process for a single boundary 

condition can be seen in Figure 3. 

Having characterised the posterior distribution the 

response surfaces can be queried to provide the temperature 

distribution any location in the model. This information can 

be used to identify regions of high uncertainty which could 

be targeted for further measurement studies. These 

temperature distributions can also be supplied to stress 

analyses in order to refine stress and life predictions. The 

Bayesian approach can be applied to these structural 

models, with the probability distribution of the thermal 

input defined by the method described here. 

 

 
FIGURE 2: EXAMPLE BURN-IN AND SAMPLING 

PERIOD 

 

 
FIGURE 3: EXAMPLE PRIOR, LIKELIHOOD AND 

POSTERIOR DISTRIBUTION FOR A SINGLE BOUNDARY 

CONDITION 
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RESULTS 

An example thermal model of a generic high pressure 

stage one blade was developed in ANSYS APDL. This 

relatively complex model consists of over two hundred 

separate boundary condition regions. A convective load 

applied to the aerofoil which is defined with a fixed fluid 

temperature and spatially varying heat transfer coefficient. 

Blade internal cooling was modelled using fluid elements 

with specified mass flow, which are linked to the internal 

surfaces with applied heat transfer coefficients. A number of 

other convective and conductive boundary conditions are 

also applied. 

 

 

 
FIGURE 4: CENTRAL ESTIMATE (UPPER) AND 

PERTURBED (LOWER) NODAL TEMPERATURE 

PREDICTIONS FROM ANALYTICAL MODEL 
 

A percentage perturbation is defined for each boundary 

condition, or group of boundary conditions. The amount of 

perturbation is based on engineering judgement. The model 

is then run for a central estimate case, and an additional case 

for each boundary perturbed once. This results in over two 

hundred steady-state solutions which are used to generate 

the response surface, assuming a linear response of nodal 

temperature result. An example of the central estimate and 

perturbed nodal temperature solutions are shown in 

Figure 4. The central estimate is identical to the prior 

sampled at the 50.0th percentile. 

The standard deviation of the central estimate is shown 

in Figure 5. 

 

 
FIGURE 5: STANDARD DEVIATON OF PRIOR 

 

Example test data was created for 27 locations as shown 

in Figure 6. This presents a realistic number and spread of 

thermal crystal locations which are commonly used to 

capture peak temperature from an engine test. Intentionally, 

there are fewer crystals at the tip of the blade. This presents 

as a larger standard deviation in likelihood. A standard 

deviation at each measurement location of 3.5 K is used 

with a normal distribution to define the likelihood. The 

resultant central estimate and standard deviation of the 

likelihood is shown in Figure 7. 

 

 
FIGURE 6: MEASUREMENT LOCATIONS  
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FIGURE 7: CENTRAL ESTIMATE (UPPER) AND 

STANDARD DEVIATION (LOWER) OF LIKELIHOOD. 

 
The response surface is generated and the MCMC 

algorithm is used to generate the central estimate and 

standard deviation of the posterior as shown in Figure 8. 

The three response surfaces are sampled at the 

measurement locations, comparing the distribution from the 

three functions. Examples at two locations are shown in 

Figure 9. 

 

DISCUSSION 

The developed framework allows a manufacturer to 

gain a better understanding of the uncertainty in the thermal 

predictions of their components, and hence life and 

maintenance schedules. This should result in financial 

benefits for the manufacturer or operator of equipment.  

As the outlined approach develops a spatial map of 

uncertainty, this can be used to specify further testing and 

evaluate value for money on proposed tests. The value 

returned by a test can be simulated by running the Bayesian 

analysis with additional points, updating the likelihood 

response surface. 

 

 
FIGURE 8: CENTRAL ESTIMATE (UPPER) AND 

STANDARD DEVIATION (LOWER) OF POSTERIOR. 

 
Bayes’ theorem allows for continuous revision of the 

posterior using new measurements and setting the previous 

posterior to be the new prior. This approach is ideal for 

condition based lifing assessments, which rely on accurate 

reduced order models. Reduced uncertainty in life 

predictions allows for greater benefit to be gained from the 

condition based monitoring approach, resulting in greater 

component re-use.  

The proposed method requires the thermal analyst the 

set reasonable perturbations for each boundary condition. 

Unrealistic precision applied to the probability of boundary 

conditions will propagate through the analysis to the 

posterior. Similarly, boundary conditions must be specified 

in a reasonable manner or with sensible grouping. If this is 

not done then the proposed method would produce a set of 

unphysical boundary conditions. 

Existing tool sets may need to be updated to manage 

the required simulations. The size of the mesh also becomes 

significant, as the nodal results are exported for each 

solution. The approach presented has been demonstrated for 

a steady-state solution, but comparison to transient 

thermocouple data is also available, but will require more 

processing time. 
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FIGURE 9: TWO EXAMPLE DATA LOCATIONS AND RESULTING PRIOR, POSTERIOR, AND LIKELIHOOD 

DISTRIBUTIONS. 
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ALTERNATIVE APPLICATIONS 

This approach is generic and can be applied to a number 

of different applications. Any instance where an analytical 

model is created and compared to an alternative dataset. As 

already mentioned, structural models fit ideally into the 

same framework described here.  

An example of an energy storage application has been 

developed to demonstrate this technology. The model is 

shown in Figure 10 below. The model has five convective 

heat transfer surfaces, one conductive boundary to the 

ground, and an internal heat generation. In order to build a 

response surface, the convective loadings and internal heat 

generation are varied one-factor-at-a-time (OFAT). The 

OFAT approach is reasonable for this test case as the run 

time is low. Other approaches can be used to generate the 

required response surface, for example multi factor 

variation. A total of 25 steady-state thermal simulations 

were run. 

 

 
FIGURE 10: ENERGY STORE MODEL DOMAIN, 

WITH INTERNAL HEAT FLUX SHOWN WITH BLUE 

ARROW 

 
Test data was manually generated for a single point, and 

this was input to the statistical analysis framework to derive 

the most likely set of boundary conditions, and an 

associated standard deviation of the posterior. The 

suggested boundary conditions were then input to the 

thermal model, which was re-run and produced the 

predicted comparison to the test data. 

This example could then be developed further, for 

instance aiding on measurement campaign decisions, such 

as whether it is more beneficial to more accurately measure 

one additional location, or measure two locations with 

greater standard deviation. All additional measurement data 

would lead to a decrease in standard deviation of the overall 

thermal prediction if specified correctly. 

In the example of an energy store, this would decrease 

the uncertainty of the total heat stored in the system, and 

would allow system level operation decision to be made 

regarding the use of the energy store.  

An alternative but similar example would be a nuclear 

fuel storage facility, where spent fuel casks are stored, but 

continue to release heat energy at a low rate. The approach 

identified could help decisions regarding the level of 

ventilation required to keep the facility within a required 

temperature range.  
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