

The Energy System of the Future

To a carbon neutral energy system in 2050

Jarig J. Steringa | Gasunie | The Netherlands

Introduction	3
Scenarios	8
Main Conclusions	10

How it all began (Dutch Climate Agreement)

2019	 Gasunie, TenneT and DSOs start an integral infrastructure exploration for 2030-2050 Ready in 2021
	Klimaati
	 Use insights from energy sector Include industrial demand development and regional energy strategies Involve relevant stakeholders and market players Guideline for investment plans of network companies and for other parties

Current transport and distribution networks

The energy system in 2050: how to balance the system?

- Current energy system: conventional production, demand-driven
- Future energy system: variable generation from wind and sun
- Continuous difference between supply and demand (hourly and seasonal)

Introduction	3
Scenarios	8
Main Conclusions	10

Supply & demand scenarios for 2050

Starting principle: 100% CO2 reduction in 2050

- Regional development \bigcirc CO₂ reduction
- Almost self-sufficient \bigcirc and circular
- \bigcirc Local projects (solar, district heating)
- Reduction of energyintensive industry

Scenario National

- \bigcirc National development CO₂ reduction
- \bigcirc Largely selfsufficient
- Large scale projects (offshore wind)
- Stable energy- \bigcirc intensive industry

Scenario **European**

- EU CO₂ tax with border \bigcirc compensation
- \bigcirc **Import oriented:** green gas and biomass
- \bigcirc Energy-intensive industry growth
- Lowest cost CO₂ reduction incl CCS

Scenario International

- \bigcirc Entire world aiming for CO₂ neutral
- \circ **Import oriented: H**₂
- \bigcirc Free trade of CO₂-free energy
- Energy-intensive \bigcirc industry growth

Main Conclusions	10-24
Scenarios	8
Introduction	3

Considerably expanding and adapting infrastructure

Large-scale flexibility resources are required

Location supply, demand, flexibility determines e-net impact

Strong increase in costs and space requirements

Major acceleration needed, feasibility is approaching limit

Long-term perspective and integral exploration essential

Considerably expanding and adapting infrastructure

High pressure gas network can be split in H2 and methane networks

Hydrogen development path: adding available pipelines, compression and additional east-west connection

Development 380 kV grid towards 2050

- Most challenging for 380kV grid:
 - High infeed of wind during periods of high demand
 - Export to Germany
- Based on scenario assumptions, further grid expansions are foreseen in certain areas of the country in all scenarios.

Large-scale flexibility resources are required

Flexibility: large capacities are needed

- **Curtailment** powerful instrument at low cost
- **Battery storage** for short periods of imbalances (day/night)
- **Power to Gas** for long periods of imbalances (seasonal storage)
- **Power plants** for security of supply

Flexibility: large volumes of seasonal storage are needed

- In all scenarios large volumes of gas storage required (50 to 60 TWh) to compensate for seasonal difference in supply and demand.
- These volumes correspond to 8 to 10% of final demand.

Volumes for seasonal storage (buffers) 100 90 80 Energy volume (TWh) 70 60 50 40 30 20 10 0 Methane Hydrogen Regional National European International

Strong increase in costs and space requirements

Costs of the energy system will double

- Meeting 100% emission target \rightarrow doubling of energy prices (all scenarios)
- Self-sufficient scenarios (REG, NAT): cost dominated by capital costs
- EUR, INT scenarios: cost dominated by costs for hydrogen or green methane imports

* On an annual base the cost for grid investments in E&G are inline with the costs presented in Strategy&/PWC study for NBNL of april 2021 https://www.netbeheernederland.nl/_upload/RadFiles/New/Documents/20210407-Finaal%20rapport%20Project%20FIEN.pdf

Cost in € per MWh

Feasibility of the construction portfolio is challenging

The II3050 scenarios require a further growth of the 380kV-grid, and new pipelines as well

Long-term perspective and integral exploration essential

Long term perspective and integral scope crucial for affordable, reliable system

Conclusions (rephrased)

2

3

4

6

- Expand the electricity network

- Build a nationwide hydrogen transport network
- Develop large-scale flexibility resources:
- electrolysers, hydrogen storage (caverns, depleted fields), hydrogen fired power plants
- Expect higher costs and use of extra space
- Choose the right locations:
- electrolysis near supply of green electricity
- power plants near consumption of electricity

5 Speed up the work:

- investment lead times, limited availability of qualified workers

Take a long-term perspective:

- to identify and build measures on time
- to ensure correct choices for an efficient transition to 2050.

