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ABSTRACT 

Industrial gas turbines require operational flexibility 

and availability to be successful in the current business 

environment. Traditionally, operational risk is managed, in 

part, through scheduled maintenance (based on operation 

hours), which is typically formulated through a 

combination of experience and engineering assumptions. 

These assumptions are usually inherently conservative and 

therefore limiting to operational flexibility. Customers are 

often limited to finite operational hours, starts, firing 

temperatures and/or rotor speeds. Recent advances in 

Physics-based Modelling (PBM) and Data Analytics, 

combined with secure machine data acquisition 

technologies have provided a platform for the development 

of Digital Assets. These Digital Assets are created to 

mirror actual physical assets operating in the field. Digital 

Assets are a key technology in the implementation of the 

industrial internet of things (iIOT), providing the 

flexibility to respond to changes in operation or identify 

opportunities to optimize the asset’s performance during 

operation, while also maximizing availability.  

This paper presents an overview of the critical 

technologies and approaches needed to successfully build 

and deploy a functional, efficient Digital Asset, which 

accomplishes the above goals, in addition to optimizing the 

life cycle cost of industrial gas turbines. The paper 

considers a series of key contributing factors, starting with 

the efficient and secure acquisition of machine data to the 

development and application of physics-based models, 

statistical models, and data analytics which utilize the 

machine data and generate value through a framework of 

People, Process and Technology. 

 

INTRODUCTION 

Industrial gas turbine operators are dependent on the 

availability of their engines for successful operation of 

their business. Unplanned down time is costly, disruptive, 

and represents a significant risk. Equipment reliability is 

therefore of utmost importance. From an OEM 

perspective, reliability is critical in satisfying customer 

needs and expectations. 

Historically these considerations have been addressed, 

with some conservatism, at the component and system 

design phase. However, as operators expect more 

capability and value from their industrial units, it has 

become imperative that OEMs improve their technological 

and analytical modelling capabilities and leverage them in 

order to maximize value for their customers. 

Currently, a plethora of research is being done on 

turbine monitoring (for both aero and industrial 

applications) as seen by the theme of the ASME 2018 

Turbomachinery Conference. Gas turbine performance 

prediction has been broadly classified into two approaches 

(Sekhon, R., Bassily, H., Wagner, J., 2008). The model-

based and model-free approaches each have their merit. 

Model-free approaches can lead to interesting conclusions, 

some inconsistent with the physical reality of a gas turbine 

system.  

The newest paragon of architecture for such 

monitoring and analysis in the industrial turbine setting is 

an incorporation of an on-site and a remote based system 

(Simon and Rinehart 2014). The on-site logic continuously 

monitors control sensors and actuator positions. As part of 

the architecture, automated data acquisition and 

transmission systems on-site work to transfer the gathered 

data to the remote monitoring locations. From these remote 

monitoring stations, the sampled analog engine 

measurement data can be further analyzed by algorithms 

too intricate or memory/processor intensive for on-site 

feasibility and by system experts. As is true with any 

modeling endeavor, the key to the performance of the 

technique is having a model that accurately reflects the 

nominal operating performance of the actual engine 

(Simon and Rinehart 2014). Physics-based models are 

generally very complex, include many variables and 

require expert knowledge to understand. Furthermore, 

these models typically require defined inputs and yield 

defined outputs.    Simplified and more flexible approaches 

abound; indeed, there are numerous investigations for both 

real-time, model based analysis and post process analysis 

(Das, S., Sarkar, S., et. al., 2013), (Merrington, G., Kwon, 

O., et. al., 1991), (Kerr, L., Nemec, T., Gallops, G., 1992). 
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Furthermore, There are methods that mix both model 

based approaches; a hybrid modeling approach has been 

applied where neural networks were trained to engine 

models and then operated on the underlying engine models 

enabling a self-tuning mechanism akin to Kalman filter. 

((Venturini, M., Puggina N., 2012). In any case, the 

resultant models and capabilities can be defined as a 

Digital Asset, which will be further define addressed in the 

next section.   

 

NOMENCLATURE 

PBM 

iIot 

Ni 

ROM 

FEA 

EHM 

CFD 

RUL 

OEM 

PDF 

Physics-Based Modeling 

Industrial Internet of Things 

Life to Crack Initiation  

Reduced Order Model 

Finite Element Analysis 

Equipment Health Management 

Computational Fluid Dynamics 

Remaining Useful Life 

Original Equipment Manufacturer 

Probability Density Function 



DEFINING THE DIGITAL ASSET  

A digital asset is a virtual representation of a physical 

asset, which for this paper, is an industrial gas turbine 

along with the underlying systems and components. The 

term is ubiquitous to any industrial equipment which is 

significantly important, or key, to the successful execution 

of an industrial process.  

A digital asset is a combination of physics-based and 

data driven models, such as analytics and statistical 

models, which can be used to define the basic functionality 

of the asset. The nature of the digital asset is specific to the 

application of the physical asset and can therefore vary 

significantly from customer to customer and application to 

application. The ultimate value of the digital asset is to 

help define a continuous and accurate risk profile based on 

machine data, from the available sensors and indicators 

associated with the equipment. This results in optimal 

flexibility and utilization of the asset, which can be 

tailored to individual customers or fleets in (or near) real 

time.  

Typically, complex industrial assets such as gas 

turbines, are designed with levels of conservatism. This 

conservatism is a product of assumptions driven from 

experience and design knowledge as well as expectations 

to how the equipment will operate. As digital assets are a 

relatively new development in the industrial gas turbine 

industry, (GE Research, 2015), specific customers engine 

operation has not factored directly into legacy designs. 

Historically engines have been designed around a general 

application, where the acceptability of the design is 

governed by the extreme bounds of the desired 

functionality. This approach ensures a high probability that 

the asset will function under all potential conditions and is 

considered safe design. Using experience and design 

knowledge, it is possible to define a typical range of 

operations, within which the asset is required to function. 

The operational range, from mild to extreme conditions 

can be considered as a probabilistic distribution, see Figure 

1. The mean or average probability would coincide with 

the typical operation, and the upper or lower bounds would 

coincide with the most extreme conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Illustrates the aspects of the safe design 

approach as a probability distribution. 

 
The confidence required to ensure reliability of the 

equipment is also the source of the conservatism. 

Designing the asset to function under extreme conditions 

that have a relatively low probability of occurring, (i.e. 

<2.5%) means there is a high probability, (i.e.>97.5%) that 

the asset is underutilized, (with regard to the functionality 

in question). For example, in the case of critical hot section 

components, such as turbine disks, the safe design 

approach requires the disk is capable of withstanding the 

most extreme operational profiles, dealing with the highest 

temperatures and stresses over the greatest number of 

cycles and dwell periods. The result is a disk that can 

withstand the extremes of operation, but is probably 

underutilized for low load applications with respect to the 

life of the disk. 

Unfortunately, this is a necessary byproduct of the safe 

design approach. It is typically unacceptable for OEMs and 

operators alike to design, build and operate industrial 

equipment with a high probability of failure. Therefore, 

without a condition based approach to asset management 

there are few options available. 

The only way to challenge these assumptions is with 

machine data and most importantly, a digital asset model 

capable of processing the data in such a way as to provide 

value. This becomes increasingly important if the 

application of the equipment is changing over time with 

customer needs, as this may invalidate the initial design 

assumptions. As operational profiles change the need to 

respond quickly and effectively becomes paramount for 

optimal management of the asset. If the actual operational 

profile is known, there is no need to make assumptions and 

the conservatism can be avoided. thereby, optimizing the 

full utilization of the asset. It is worth noting, that this does 

not eliminate all uncertainties, there may be additional 
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system variables which need to be taken into account. This 

example is only applicable to operation, which is a major 

source of uncertainty in the design.  

It is the customers’ needs which drive the functionality 

of the digital asset. Therefore, functional aspects of the 

digital asset should be developed incrementally over time 

in partnership with the operators in order to ensure the 

digital asset is adding value. This approach affords the 

developers and operators the opportunity to build 

capability into the digital asset which is driven by the 

customers actual needs and is associated with value added.  

The recent advent of digital assets can be attributed to 

advancements in several key areas; 

 Computational capability from new software 

architectures (Zaharia, M., Chowdhury, M., 

et. al., 2010)  

 Data security (Huawei IoT Security, 2017)  

 New internet platforms designed to support 

large scale data processing for industrial 

applications (iIot) (AWS, 2018) (Google 

BigQuery, 2018) 

 Computationally efficient physics-based and 

data analytics models (van Paridon, A., 

Barnes, C. et al) (van Paridon, A., Bacic, M. 

& Ireland, P.). 

However, this industry is still evolving and requires a 

continued close collaboration between all disciplines to be 

successful.  The future of digital asset development lies in 

the effective application of machine intelligence. Although 

a popular term, often indicative of the iIOT zeitgeist, 

machine intelligence is not synonymous with automation. 

In fact, autonomous technologies are still early in 

development, evident by the lack of substantive value to 

industrial businesses.  Rather, the immediate value in 

machine intelligence is in the ability to effectively 

communicate large quantities of data quickly and 

efficiently. Bringing value through a more robust 

collaboration between the operators and the machine. 

Effective communication provides real, actionable 

intelligence from data processing. Examples, such as 

forecasting the durability of an engine for a given 

operational profile to minimize downtime and optimize 

scheduled maintenance are presented later in the paper.  

This type of intelligent communication is dependent 

on several fundamental elements defining the digital asset. 

In order of importance; 

 Machine Data, which can be further 

categorized into; 

o Ongoing availability of data  

o Secure data acquisition 

o Quality of data 

o Fidelity of data 

 Model Definition, which can also be further 

classified into; 

o Physics-based 

o Analytics 

o Statistical  

o Hybrid 

The following sections discuss the requirements for 

each of the fundamental elements in more detail, followed 

by examples of how these models interact to communicate 

actionable intelligence and provide value. 

 

MACHINE DATA  

Data is the most important aspect of any digital asset. 

It is the key resource which determines the effectivity of 

the asset and the success of the intended application. It is 

the first consideration when defining the capability of the 

asset relative to the customer’s needs. Before developing 

models, or defining specifications or capabilities for the 

digital asset, evaluate and determine the status of the data. 

The following considerations should be addressed; 

Ongoing Availability: This is a fundamental challenge 

that can be insurmountable. Lack of data is probably the 

most common challenge when attempting to develop a 

digital asset.  Physics-based models need data for 

validation, conversely, analytics or statistical models needs 

data for construction and validation. Availability or even 

accessibility of data introduces a range of challenges. Even 

if a physical asset is generating data, is the data accessible 

and does the accessibility enable scalable applications? For 

example, a machine may be gathering and recording data, 

but is the data physically onsite with the machine or can it 

be remotely accessed? In the case of remote access, there 

may be physical challenges accessing the data. Often 

industrial gas turbines reside in remote locations, where 

internet connectivity is limited. There may be insufficient 

bandwidth to allow transfer of the data.  If there is limited 

connection capability, is edge computing a solution and if 

so is that solution scalable? Is a local installation of the 

software architecture needed to run the digital asset an 

option? Is there sufficient space, both physical or digital to 

store and execute the digital asset in the event of a local 

installation? How will the digital asset communicate with 

other assets, or operators in order to ensure effective 

application of machine intelligence.  

All these considerations and more are driven by 

availability of data. Without a scalable solution to access 

and manipulate data, the intended capabilities of the digital 

asset can be severely compromised. Remote connectivity 

is by far the most robust and convenient method of 

accessing data, however, cyber security becomes a 

consideration. 

Secure Data Acquisition: This follows availability and 

represents a significant challenge. Cyber security for 

industrial applications is of paramount importance. 

Without the ability to securely access the available data, 

there is no likelihood that the digital asset will provide 

value. Given the nature of industrial gas turbine 

applications, security is a key consideration for all 

customers. Having a secure network which is defensible to 

cyber-attacks is a critical element of successfully executing 

their business. If accessing and manipulating data 

compromises the security of a network it is simply 
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unacceptable. A tremendous amount of effort, preparation 

and experience in securely handling data is needed to 

effectively deploy digital assets.  

Solar Turbines Incorporated. has developed and 

deployed over 2000 industrial asset connections that are 

secure and employ purpose-built connectivity architecture 

to deliver a full suite of read-only data acquisition from the 

turbomachinery controller. The connectivity solution 

includes multiple layers of security including physical and 

virtual firewalls, and network security protocols. Figure 2 

illustrates Solar Turbines Incorporated approach to secure 

data acquisition. 

 

Figure 2: InSight Platform
TM

 Secure Data Acquisition 

Diagram (Solar Turbines Incorporated, InSight 

Connect
TM

). 

 

Data Quality: This aspect of data acquisition is 

intrinsically linked to the model definition and ultimately 

to the customer's needs. This introduces an iterative 

element to the development of the digital asset. Without 

clear model definition prior to the development of the 

digital asset, there is little to no indication that the data 

quality is sufficient to achieve the principal functionality of 

the intended digital asset. Low quality can encompass a 

variety of events, ranging from minor issues, which can be 

easily addressed and filtered from the data set (such as a 

malfunctioning sensor that is part of a larger sensor array), 

to more severe data quality issues (like missing or 

corrupted data, that cannot be cross referenced and can 

only be omitted from the data set). Each data quality issue 

can be characterized under severity and occurrence. In this 

way, the overall data set can be managed and evaluated. 

This framework prevents minor issues being overlooked in 

the event that the occurrence is high, which ultimately 

leads to lower quality data. 

Data quality can be managed through various tools 

and processes to ensure repeatability and reproducibility. 

Approaches to managing data quality issues could include, 

but are not limited to, probabilistic and statistical methods.  

Where data quality issues can be quantified, they should be 

included in a probabilistic output. Figure 3 illustrates an 

example of how a statistical approach can compensate for 

data quality. 

The challenge with this approach is quantifying the 

impact of low quality data on the outcome of the digital 

asset. This is usually predetermined and requires a 

thorough evaluation prior to the event occurring.  

 

 
 

Figure 3: Probabilistic response surface generated for 

predicting creep strain rate uncertainty over a range of 

stresses and temperatures for a typical gas turbine 

Superalloy. 

 

Other approaches which could be utilized include data 

repair techniques, employed to address known data issues, 

or data filtering which can clean noisy data. In either case 

it is important to ensure each correction or repair event is 

also tracked and quantified to ensure the overall data 

quality is adequate to perform the intended function with 

the desired level of confidence. It is important to ensure 

that the digital asset is operating on real, quality data. 

Fidelity: This aspect of the data acquisition is similar 

to quality in that, the required fidelity is typically driven by 

the model, which in turn is a function of customer needs. 

Fidelity can be defined as the combination of the 

measurement accuracy and the sampling rate. There is the 

potential for sophisticated models to be employed without 

the sufficient fidelity in the data to provide any substantive 

value.  

An example of the mismatch between model and data 

fidelity can be observed when assessing the digital asset 

for fatigue damage. Most sample rates are a function of 

time in that a sensor records a reading at a specific time 

increment. Fatigue damage is calculated using either stress 

or strain ranges and is a function of frequency. In order for 

the digital asset to calculate stress or strain ranges, a model 

is required to translate the machine data that the sensors 

are recording, such as temperature or speed, into stress or 

strain at a particular location within the engine. If the data 

sample rate is insufficient to capture the peak values 

during a transient event of the machine, the subsequent 

stress range calculation will be inaccurate, leading to an 

under prediction of fatigue damage. Therefore, if the 

purpose of the digital asset is to predict durability and the 

principal damage mechanism is fatigue, the sample rate 

needs to be high enough to ensure recording of the peak 

values during the aforementioned transient, such as, engine 

starts and stops or large load changes. Fidelity is also 

important when considering the sensor technology; is the 

sensor capable of continuously providing the level of 

accuracy during the life of the digital asset? If the sensor is 
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not robust, or the application is operating in a relatively 

harsh environment, data may be compromised, leading to 

the quality issues mentioned above. Is the data sufficiently 

accurate to achieve the intended function? For example, if 

temperature sensors are being used to calculate creep 

damage, is the fidelity of the measurement sufficient to 

manage the sensitivity in the damage prediction. At typical 

industrial gas turbine operating temperatures, creep 

damage can increase or decrease by a factor of 2 for 

relatively small changes in operating temperatures, such as 

20F for commonly used Superalloys. If the repeatability of 

the measurement is low, then the resultant creep damage 

could vary significantly, resulting in inaccuracies in the 

prediction and a loss of capability and value for the digital 

asset. Figure 4 illustrates the challenge with fidelity for 

two common damage mechanisms associated with 

industrial gas turbines. 

Figure 4 illustrates the effects of temperature on creep and 

fatigue for a standard Superalloy at typical metal 

temperatures, for industrial gas turbines applications   

 

Conversely, performance degradation of an industrial 

gas turbine typically takes much longer period of time 

(weeks, or even months depending on several key 

operating factors) and as such, lower sample rates can be 

utilized and still provide the necessary fidelity to perform 

the intended function of the digital asset. 

Therefore, it is critically important to understand the 

fundamental functions of the digital asset in order to 

determine if the data being collected is adequate. Again, 

data presents the biggest challenge to the application of 

digital assets and should be evaluated prior to the 

development of any digital asset. It is also worth noting 

that data acquisition systems require investment and as 

such it is often important to leverage what is currently 

available in order to demonstrate value before committing 

to further investment. Herein lies the dilemma in the use of 

digital asset for asset management. The potential benefits 

digital assets can provide in active risk management and 

asset optimization ensure continued evaluation of this 

technology but the value of the digital asset in each aspect 

must be estimated and vetted before significant investment 

of capital is made to implement it.  

 

MODELS AND ANALYTICAL FRAMEWORKS  

As discussed in the previous section, data is the key 

element of the digital asset. Without an adequate data set 

the models defining the digital asset cannot adequately 

function. Therefore, the data along with the customers’ 

needs, define the models needed to construct the digital 

asset.  

Digital asset specifications should start with the 

customers’ needs. What functionality is required to add 

value to the customers operation? In the case of the 

industrial gas turbine, basic functionality can be simplified 

into several categories, i.e. 

 Availability 

 Durability 

 Performance (including emissions) 

For the purpose of optimizing the asset from an 

operational standpoint, models can be developed to predict 

elements of all the above characteristics. However, before 

specifying content it is important to evaluate the machine 

data as discussed in the previous section. Between the 

limitations defined by the machine data and the 

requirements defined by the customers’ needs, the best 

models can then be identified to perform the desired 

function. There are several classifications of models and 

techniques which can be employed; 

 Physics based models (Bound)  

 Data driven models (Unbound) 

 Hybrid models 

Each model type has specific advantages and 

disadvantages which should be considered for the purpose 

of optimizing the specific functionality of the overall 

digital asset.  

Physics-Based Models: can be defined as models 

governed by the laws of physics and are inherently bound. 

Physics models incorporate the physical characteristics of 

whatever functionally is being modeled. The models are 

typically derived from physical laws and have been 

validated under a range of conditions. The formulation of 

the model does not change with application, rather, the 

specific application under consideration is prescribed via 

the variables defined in the model. For further reference 

consider any physics or engineering text.  

The disadvantage is that physics based models can 

vary in complexity and can require significant amounts of 

data for validation of the model. Every aspect of interest of 

the physical situation being modeled should be captured by 

the physics model and validated with appropriate data.  For 

example, physics models predicting a material response 

will typically require material data, as well as operational 

data, which then requires further translation into variables 

that can be coupled to the material data, such as strain 

tensors. This aspect of the physics-based model creates a 

significant challenge when considering computational 

capabilities and efficiencies. Often physics-based models 
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rely on advanced numerical techniques to solve, as in the 

example above, calculating strain tensors for a complex 

geometry, typically requires a finite element analysis 

(FEA). Similarly, calculation of velocity and pressure 

distributions of internal flows with complex geometry 

often require computational fluid dynamics (CFD), both of 

which can require significant computational resources and 

more importantly, time. These types of approaches are not 

suited to dealing with large operational data sets. To 

address this, reduced order or surrogate models are 

typically employed which reduce the computational effort 

and subsequently time. The challenge here is ensuring that 

the reduced order models, (ROMs) are capable of 

capturing the accuracy needed to adequately perform the 

intended function. 

The advantage is that physics models are bound. The 

models cannot only be used to safely interpolate, but also 

extrapolate with a high degree of confidence that the 

predictions are correct. It is for this reason that Physics-

based models are the preferred approach for dealing with 

nonlinear extrapolations. Highly nonlinear stress-strain 

systems, such as those found in gas turbines, can be very 

difficult to extrapolate and require domain expertise to 

understand the relationships which govern the system.  

Considering the benefits and limitations, it is 

important to understand when to employ this approach. 

Physics-based models are best suited to applications where 

the resultant outcome has no prior indication of the event 

occurring and the occurrence of the event is intolerable. 

For example, a suitable application for physics-based 

modeling would be predicting the life of an industrial gas 

turbine disk. Often there is no measurable indication that a 

part will develop a crack before the event occurs, (since 

stress and strain is not directly measurable in a gas turbine) 

and the presence of a crack in a critical rotating component 

maybe intolerable to the continued operation, resulting in 

an unplanned shutdown or potential catastrophic failure. 

Therefore, a physics-based model would be a suitable 

candidate to predict this event using the available machine 

data. In this case, the sensor data must be translated into 

parameters, such as stress and strain which are usually 

required to predict durability.  

Data Driven Models: are unbound and are based 

solely on the input data and model selection. Represented 

by different forms of mathematical models (Murphy, 

2012), ranging from simple ordinary regression models to 

highly complex neural networks with many hidden layers.   

Data driven models coupled with statistical techniques can 

be employed to find relationships and correlations between 

any given data sets.  

This approach does not require a physical framework 

and as such can be used with any combinations of data 

sets. However, the applicability of the output is very much 

dependent on experience as it may have no grounding in 

physical relationships that must hold in reality and should 

be factored into the capability of the digital asset. This 

provides significant flexibility when considering which 

data driven model to employ. Data driven models provides 

more choices and tend to be more computationally 

economical than physics-based models. 

The biggest drawback is the unbound nature of the 

models, extrapolations and potential correlations maybe 

nonsensical. This can introduce significant risk when 

considering the complexity of physical systems, such as 

industrial gas turbines. At best, the system is highly 

complex and requires experience and domain knowledge 

to extract value from the machine data and resulting output 

of the data driven models. At worst, the interactions are too 

complex, resulting in spurious correlations and misleading 

data driven models which generate unwarranted concerns 

that cannot be substantiated. Such an example can occur in 

equipment health management, (EHM).  Consider the 

blind application of a data driven model to performance 

degradation, where the data set acquired is from the site’s 

winter months only.  The data driven model is fit to the 

data and produces low errors upon validation.  Then data 

from summer months is acquired where the ambient 

temperature is much higher, and upon evaluating the 

performance of the gas turbine with the data driven model, 

it appears the gas turbine has degraded substantially, when 

in actuality the decrease in power comes from the decrease 

in density of air due to increased temperatures and the 

resulting effect this has on compression and the 

combustion process.  If the data driven model’s conclusion 

is taken without the domain expert’s agreement, a 

recommendation for shutdown and compressor wash will 

be suggested to the customer, or worse, a shutdown and 

full inspection of equipment both resulting in unnecessary 

downtime.   

This aspect of deploying data driven models for 

predictive analytics introduces one of the most significant 

challenges. In the case of very expensive industrial 

equipment, such challenges to use purely data driven 

models are only overcome by utilization of large, high 

quality and high-fidelity data sets, which cover most of, if 

not all of, the domain of operation for a given piece of 

equipment. Furthermore, domain expertise if required to 

differentiate low quality and high-quality data sets.  It 

should be clear that such data sets create an artificial 

bound on the model, in the sense that, if the data set used 

to train the model spans the entire data space there is no 

need for a predictive model and the exercise becomes self-

defeating.  However, the existence of such an expansive 

data set is rarely found in reality.  Indeed, it is both costly 

and impractical to expect customers to allow the asset 

managers to perform daily tests in situ on all available 

machine data for the purpose of building fully expansive 

data sets. It is much more practical to build a predictive 

model capable of achieving this outcome.  This is a key 

differentiator in the application of data driven models to 

large scale IoT domains. Even with the application of data 

driven models, domain expertise is crucial. The 

combination of physics models and data driven models is 
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where the digital asset realizes its full potential; such 

combinations can be referred to as hybrid models. 

Hybrid Models: are blends of all the different classes 

of models to achieve an optimal configuration for the 

digital asset. This provides the developers considerable 

flexibility by taking advantage of the aspects of each 

model approach  maximize the advantages and mitigate the 

disadvantages.  

Depending on the complexity of the system being 

modeled, it is not always possible (or at least feasible) to 

model each aspect of the system with the most 

representative model. There are serval reasons why this 

maybe the case, ranging from inadequate data (as 

mentioned in the section above) to practical 

considerations, such as sufficient computational resources. 

This is characterized by the durability example given 

earlier. The most appropriate model to represent engine or 

component durability for a gas turbine engine, that fits the 

model definition requirements is a physics-based model. It 

is particularly challenging to translate machine data, 

represented by a collection of operational parameters such 

as temperatures, pressures and speeds, into the 

corresponding transient stresses and strains at a given 

location on a key component. Further computational effort 

is required to operate on the stresses and strains needed to 

calculate damage for the damage mechanisms of interest, 

(such as fatigue, creep, oxidation, etc.) which is then used 

to determine remaining useful life (RUL). Then this must 

be done for multiple locations on multiple key components 

within the engine. This process flow only represents the 

computational element of determining durability. To have 

a more complete assessment of durability, additional data 

such as physical data, (via component inspection) is 

required and is discussed in more detail in the next section. 

Traditional approaches (full order finite element 

models) which convert gas path temperatures, pressures 

and rotor speeds are impractical and as discussed 

previously, would require excessive computational effort. 

Therefore, reduced order (or surrogate) models are 

required to simulate the full order model approach and are 

not considered physics-based models, but are derived from 

the physics-based models. These types of hybrid models 

(van Paridon, A. et al) are typically lower fidelity, but are 

much more feasible and computationally efficient, 

allowing the calculations for stress and strain to be 

completed in practical time frames. Although not strict 

physics-based models, these types of ROMs do follow a 

basic physical frame work, represented by the lumped 

mass approach, but are unbound, in that the coefficients 

are not limited to physical bounds. The results of the 

ROMs are key to calculating damage using the material 

models, which are true physics-based models. Without this 

hybrid model approach, it would be impractical to process 

large operational data sets spanning multiple years.  

Hybrid models also encapsulate data driven models 

which are trained on the high fidelity, physics-based 

models.  For example, Solar Turbines Incorporated can use 

its high fidelity thermo-dynamics simulation physics-based 

model to generate a range of operational data.  Data driven 

models such as Neural Networks, Support Vector 

Machines and Ensemble methods can learn the physics-

based model parameter space.  These models are a type of 

surrogate model, however, often materialize as black 

boxes.  This black box nature can be one of the drawbacks 

of such data driven models, however, these models can be 

specified at various levels of complexity and often do 

capture steady state dynamics of a particular system 

provided enough of the parameter space is capture in the 

training data. It should be noted that accuracy is a function 

of the input data and should not be confused with the 

capability of the model, see above section on data integrity. 

 

IDEALIZED DIGITAL ASSET STRATEGY  

Value can be defined in a variety of ways, but is typically 

associated with the ability to accurately forecast behaviors 

or events which can be used to optimize the asset. Figure 5 

illustrates the digital asset concept.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Illustrates the constitutive elements of the digital 

asset relative to the flow of data and ultimate purpose. 

 

The layering of models, combined with the choice of 

model types is dictated by the desired functionality, which 

is driven by customer’s needs and available useful machine 

data, (as discussed in previous sections). The number and 

definition of the model layers as well as the interaction 

between layers will be specific to the digital asset. It is 

typical to have model layers that are completely 

independent and do not interact with other model layers. 
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There are also model layers that are critically dependent on 

other model layers, such as in the hybrid model discussed 

in the previous section. The level of interdependency is 

defined by the desired functional output.  

As the graphic depicts, analytical frameworks are 

designed to integrate multiple layers and provide 

predictive capabilities. An example framework may utilize 

physics-based, system specific models for a given engine 

system in one layer while utilizing fleet data driven or fleet 

statistical models in another layer.  As an example of fleet 

driven statistics, consider an OEM monitoring the health of 

a remote asset.  The fleet statistics layer may compare 

descriptive statistics of various comparable engines 

running on the same operational envelope to classify 

nominal vs off design behavior.  For example, in the 

figures 6a and 6b, a specific engine’s first and second 

bearing vibration displacement (peak to peak) is shown.  In 

one case, the engine, colored green, is well within the 

expected range of the fleet.  The other, can be seen to be 

the 5
th

 highest by average, in the fleet.  However, note that 

the data range as described by the typical boxplot 

parameters, appear perfectly reasonable if compared only 

with itself in the same time frame, which is also seen in the 

time series plot. 

This example illustrates the power of the hybrid model 

approach, where both physics-based and data driven 

models amalgamate in the analytics framework to deliver 

maximum value to the customer. 

 
 

Figure 6(a): Example vibration [mil p-p] plot for a given 

engine, two different bearings, compared with the top 10 

and bottom 10 engines in the comparable fleet. Note that 

the top bearing plot is well within the fleet margin whereas 

the bottom plot shows the vibration to be among the largest 

in the comparable fleet. 

 

 
 

Figure 6(b) Time series data of same engine compared 

only with itself.  The data has noise, but doesn’t appear to 

be significantly different in time. 

 
The analytics framework, regardless of model layers, must 

be validated properly before the digital asset can deliver 

reliable value.  Sources of validation should be as 

abundant as possible and should include many independent 

sets of data such as  

 Fleet wide historical data  
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 Acceptance Test data 

 Disassembly data 

 In situ inspection data 

From experience, it is clear that adequate data sets are 

necessary but not sufficient to create a successful digital 

asset.  Domain experts with an understanding of system 

design and intent are required for the successful 

implementation of an analytics framework, and 

construction of corresponding digital assets.  Care should 

be taken when acting on insights from data alone. 

  

APPLICATIONS 

To emphasize the concepts discussed in the previous 

sections, two examples of digital asset functionality are 

presented which demonstrate how a blended approach to 

digital asset development can provide an effective solution 

to address traditionally difficult applications.   

Application I: Predicting the Remaining Useful Life 

(RUL) of Turbine Disks with physics-based models:  Along 

with other key components, turbine disks are critically 

important components in the determination of overall 

engine durability which, as discussed in the previous 

section, is a principal element of asset optimization. For 

this example, RUL, is represented by life to crack 

initiation, Ni.  

As discussed previously, traditional life prediction 

approaches would require complex full order models 

(FEA) to translate the machine data, such as gas path 

temperatures and engine speeds into a representative stress 

state at a given life limited location. These models are 

impractical for this application, requiring too much 

computational effort to predict the actual RUL. Therefore, 

hybrid models, in the form of ROMs, should be used for 

this application. A ROM for each life limiting location is 

required as there may be several different life limiting 

locations on the disk. Continuous condition based 

assessments require the digital asset to assess multiple 

damage mechanisms simultaneously, identifying the most 

damaging location based on varying operating profiles. 

Therefore, multiple ROMs of key locations, (such as disk 

or blade firtree lobes and cooling holes), are created to 

represent the turbine disk and the Analytical Framework 

must be able to handle all relevant damage mechanisms 

and their interactions. Each ROM creates a specific stress 

and strain hysteresis response for each engine cycle. 

Typically, the material response is nonlinear and path 

dependent. Therefore, the complete stress strain hysteresis 

should be representative of the entire loading history. 

Figure 6 illustrates the process flow and subsequent 

material response for a given operational profile. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Hybrid (ROM) approach for predicting material 

response for a complex operational profile  

 

This is critically important and is perhaps the most 

valuable aspect of a condition based life prediction 

approach. Evaluating the stress strain hysteresis as a 

continuous history identifies interactions between various 

damage mechanisms caused by variations in the loading 

cycles. The interactions can result in significantly more 

damage, compared with evaluations performed on identical 

(stabilized) cycles or when damage mechanisms are 

considered independently, as in the case of an equivalent 

hours approach (Green, R. et al). Failure to account for 

these types of interactions between major damage 

mechanisms may result in severely under predicting 

damage which could result in unintended consequence, 

such as catastrophic failure and unplanned downtime. 

Once the full stress strain hysteresis response is 

predicted, the damage can be determined using physics 

models. In this example, the physics models represent 

material models for predicting primarily creep and fatigue 

damage. Material damage models will vary depending on 

the component and subsequent damage mechanisms 

governing the life of that component. This is where domain 

knowledge and experience is important, to ensure the 

correct material models are considered for specific life 

limited locations.  

Knowledge of the design, materials and overall 

operational limits are critically important to understanding 

which damage mechanisms should be considered. Lack of 

representation, or inadequate model selection may lead to 

underpredicting damage and increased risk. In the case of 

industrial gas turbine disks, the predominant damage 

mechanisms are creep and fatigue. It is important to select 

a material model capable of predicting damage from both 

mechanisms as well interactions. There are several 

accepted life prediction approaches capable of modeling 

this type of behavior, (Manson, S.S., Halford, G.R.). 

Selecting the most appropriate is dependent on many 

factors, including experience, available material data and 

even the business models and preferred approach to asset 

management. One such approach is Ductility Exhaustion 

(Ainsworth, R. A., et al.), (Green, R. et al, U.S. Patent No. 

9.200,984) which is a physics-based model that can be 

used to calculate damage from creep and fatigue as well as 

accounting for interactions between both mechanisms. The 

subsequent damage predictions for each cycle can then be 

accumulated for the entire operational history. Figure 7 

illustrates the computational process to move from 

measurable machine data to final durability prediction 
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Figure 8: Process flow for predicting durability from 

machine data   

 

By integrating this damage prediction into a statistical 

framework, it is then possible to generate probabilistic 

models which can be used to manage risk. The 

probabilistic model is used to determine a confidence in 

the historical damage accumulation but can also be used to 

provide a framework for forecasting. Forecasting in this 

example is defined as a method of predicting the future 

damage state for a given operational profile, or the 

probability of generating an operational profile based on 

external conditions. It is this functionality which provides 

most value to equipment operators or asset managers. 

Through the ability to forecast the future state of 

durability, it is possible to adapt operational parameters in 

order to minimize planned down time and optimize life 

cycle costs. Therefore, through the effective blending of 

hybrid, physics and statistical models, within an analytical 

framework, it is possible to create models which can be 

used to predict durability based on machine data.  

Application II: Recoverable Performance Estimation 

via Data Driven Models:  In the subsequent example, we 

compare a physics-based model of compressor efficiency 

degradation against a data driven model of compressor 

degradation.  Consider the performance of a gas turbine 

axial compressor.  A basic adiabatic efficiency calculation 

computes the ratio of isentropic work to actual work and 

can elucidate the state of the compressor health (Mattingly, 

1996).  The question is how these values are calculated.  In 

a first approximation, we can take the ratio of isentropic 

enthalpy over observed enthalpy, and we may further 

simplify by assuming an ideal gas.  In a second 

approximation, we may add more complexity by removing 

the ideal gas assumption.  In a high-fidelity simulation, we 

may utilize CFD outputs of inlet and exit temperatures and 

pressures, which employ the physics-based model 

approach.  We can in turn, build a pure data driven model 

by utilizing machine data, (if enough data is available) and 

we have domain expertise to help identify the correct 

model and parameters. 

For example, knowing that ambient temperatures and 

pressures effect the compressor discharge lead us to 

account for both of these parameters in our data driven 

model.  If we then require the data be filtered to only 

include data from a certain operational envelope, we can 

build a data driven model to fit the compressor discharge 

pressure based on some set of independent parameters.  

The data driven model may be a well-defined, continuous 

curve or it could be a discontinuous machine learning 

regression type model such as a decision tree or neural 

network.  If the data used to train the model is from a new 

compressor, or shortly after a water wash has been 

performed, the data may capture enough of the operational 

envelope such that the data driven model’s output very 

well approximate the compressor’s output pressure given 

some set of inputs.  Then, the data driven model may be 

used to create a ratio of actual pressure to predicted 

pressure, giving a measure of performance or efficiency 

(Allen, C., Holcomb, et. al, 2018)   

Both models were adjusted to begin at 100% efficient.  

In the physics-based approach (red data), a high-fidelity 

thermodynamics model was used with the engine’s 

ambient conditions and is the ratio of observed compressor 

discharge pressure to predicted discharge pressure.  The 

data driven model is a third order polynomial bound 

between ambient temperature and compressor discharge 

pressure. The model was fit to the initial data period, 

where the data (used for training) has been filtered based 

on the operational envelope.   

Figure 8 (a) shows that the data driven model, while 

not as accurate as the physics-based model, does capture 

salient features of the compressor efficiency degradation.  

Figure 8(b) shows the percent error between the data 

driven model and physics-based model.  The data driven 

model has a maximum error of 2%, depending on the 

operating condition, however, the results are achieved in 

near real-time with minimal computation effort in 

comparison to the full order physics-based model.  

 

 
 

 
 

Figure 9: (a) Data driven vs physics-based model 

comparison of compressor efficiency, (b) relative error plot 
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of data driven model with physics-based model.  In both, 

time is in hours. 

 

The value is inherent when managing large fleets, 

where scalability is paramount for data processing and 

predictive analytics.  The physics-based models are 

generally too computationally intensive to run in real time 

or close to real time.  As discussed in the previous section, 

physics-based models usually require a large number of 

input arguments, some of which are not directly 

measurable.  In many remote monitoring applications, the 

trend in a parameter may be more informative than the 

absolute accuracy, which can be realized very efficiently 

with data driven models. 

 
CONCLUSIONS & FURTHER WORK 

A high-level overview has been presented that 

considers the fundamental aspects and requirements for 

developing and deploying digital assets, specifically for 

industrial turbine applications. We have discussed the 

critical aspects of what defines a digital asset. What type of 

data and acquisition methods and systems are necessary 

for a digital asset to function.  As well as provide a 

description of the various model frameworks and 

approaches, along with an integrated strategy, which is 

needed to provide sustainable value.  

In addition, two examples have been provided 

demonstrating the practical use of digital assets for both 

durability and performance predictions. Both examples 

show the value of the different modeling approaches 

identified in the modeling framework. It has been proposed 

that  useful deployment of digital assets requires much 

more than the application of complex mathematical 

models. Indeed, to successfully provide actionable 

information through the application of machine 

intelligence, it is necessary to consider multiple options 

and approaches within the framework of people, process 

and technology.  Machine intelligence requires a balanced 

platform from which to drive correlations, otherwise there 

is a risk of generating nonsensical or misleading data. This 

outcome can lead to nuisance predictions that have no 

physical meaning.  Moreover, correlations without 

causation may materialize, potentially leading to 

inaccurate or incorrect conclusions which ultimately 

impacts business performance.  

It is therefore critically important that digital assets are 

developed and deployed within the framework of people, 

process and technology. Thereby leveraging domain 

expertise within a stable executable platform, which 

applies the effective technology in order to create 

sustainable value. 
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