

An Advanced Fault Detection Tool (FDT) for Predictive Maintenance of a Fleet of Industrial Gas Turbines

Marco Rigamonti, Ph.D. ARAMIS Srl

Sensor signals Vibration Pressure Z $x_1 \wedge$ x_n **Missed Alarm Rate** (False Negative) time time **Fault Detection False Alarm Rate** (False Positive) Time necessary to identify the abnormal condition Abnormal Normal

Fault Detection KPI – ROC Curve

Receiver Operating Characteristic (ROC) Curve

Desired Fault Detection Performance

Depends on the specific situation!

System Unavailability Cost

Fault Detection Application for Industrial Gas Turbines

Situations characterized by different information availability

The best approach to choose depends on the type of available data and information

Unsupervised FDT Framework

Unsupervised Fault Detection Tool

Unsupervised FDT Framework

Signal Reconstruction Accuracy

Signal Reconstruction Robustness

RobustnessCapability of accurately reconstructing the healthy signal in presence of
anomalies: the difference between the healthy reconstruction and the corrupted
signal allows detecting the anomaly

Problem: is the residual distribution changing?

Supervised Fault Detection Tool

Supervised FDT Framework

Unsupervised FDT

Industrial Application Gas Turbine Degradation Detection

Degradation Detection: Available Information

Monitored Period: 8 months

□ Monitored Signals (155)

- 98 Operating Condition
- 32 Vibrations [Feature extracted from raw data]
- 25 from Combustion Chamber

Operating Conditions

- Stationary (Regime)
 - 40101 patterns (1 every 5 minutes)

> Which data should be used for model training?

Different signal ranges each time the turbine is turned on

Training Set: data at the beginning of the usage period (just after turbine is turned on)

Training Set dynamically changes

Training Procedure (to be repeated each time turbine is turned on):

- Collect the data for a short period (e.g. 3 days) \rightarrow Training Set
- Develop the PCA model \rightarrow On-line signal reconstruction

Gas Turbine Degradation Detection: Residual Approach Results (II)

Gas Turbine Degradation Detection: Residual Approach Results (III)

\MS

Supervised FDT

Industrial Application Gas Turbine Degradation Assessment

Monitored Period: 8 months

□ Monitored Signals (155)

- 98 Operating Conditions
- 32 Vibrations
- 25 from Combustion Chamber

Operating Conditions

- Transient
 - 61 transients
 - > 31 Shutdown
 - > 21 Cold Start-up
 - 9 Hot Start-up
 - 54793 patterns (1 every second) [Feature Values (No raw data)]

Gas Turbine Degradation Assessment: Feature Extraction and Selection

nnovation

- Shutdown transients
- 3 KNOWN classes (in accordance to previous analysis):
 - Healthy
 - Partially Degraded
 - Severely Degraded

Fault Detection Tool (FDT) for Predictive Maintenance

□ Unsupervised FDT (Only healthy data)

- **Modules:** Signal Reconstruction + Residual Statistical test
- Application: Turbine degradation onset detection
- Results: Degradation onset detection one month and a half in advance with respect to the turbine failure

Supervised FDT (Both healthy and degraded data)

- Modules: Feature Extraction + Feature Selection + Classification
- **Application**: Turbine degradation assessment
- Results: Accurate degradation classification. Identification of a monotonic degradation indicator to be used for failure prediction.

Q&A

Questions & Answers

www.aramis3d.com

lazar

