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Fault Detection
Industrial Systems and Processes

Fault Detection: Why?

Ambient & Operating 

Conditions

Safety Improvement

Cost Saving

New Business

• Maximum Availability

• Minimum LCC

• Business Continuity
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Fault Detection Tool: KPI

• Missed Alarm Rate

(False Negative) 

• False Alarm Rate

(False Positive)

• Time necessary to identify the abnormal condition

Fault Detection
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Fault Detection KPI – ROC Curve
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Unsupervised Fault Detection: Performance Evaluation

Desired Fault Detection Performance

Depends on the specific situation! 

esTrajectori Test #

Detection #

True Positive Rate (TPR) 
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Fault Detection Tool: Real Industrial Context

Fault Detection Application for Industrial Gas Turbines

Situations characterized by different information availability 

UNSUPERVISED FDT

Only Healthy Data 

Available

(e.g., new turbine fleets)

SUPERVISED FDT

Both Healthy and Degraded

Data Available

(e.g., historical turbine fleets)

The best approach to choose depends on the type of available data 

and information



Unsupervised FDT: only healthy data available 

Monitored Signals

(current time)

Signal Reconstructions 

(Expected Healthy Condition)

Residual Computation
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Supervised FDT: healthy and degraded data available 
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FDT: Healthy Signals Reconstruction Models

Monitored Signals

(current time)

Signal Reconstructions 

(Expected Healthy Condition)
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Signal Reconstruction - Principal Component Analysis (PCA)
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Signal Measurements

Signal Reconstruction

Historical Signal Measurements
❑ PCA



Accuracy
Capability of accurately reconstructing the healthy 

signals behavior

Signal Reconstruction Accuracy

PCA SOM AAKR

Best Accuracy: (PCA) Avoid False Alarms



Signal Reconstruction Robustness

Robustness
Capability of accurately reconstructing the healthy signal in presence of 

anomalies: the difference between the healthy reconstruction and the corrupted 

signal allows detecting the anomaly

Simulation 

of Abnormal 

Conditions 

Test Data

PCA SOM AAKR

Best Robustness: (SOM) Avoid Missed Alarms



Signal Reconstruction Spillover

Spillover
Capability of accurately reconstructing a healthy signal in 

presence of other anomalous signals in the dataset

PCA SOM AAKR

Best Spillover: (SOM) More precise diagnosis of the 

anomaly



• Functioning→ 2 Hypothesis
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Statistical Test for Anomaly Detection: Z-Test

Problem: is the residual distribution changing?
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Parameters to optimize

➢N1 → Large Window Width

➢N2 → Small Window Width

➢N_Delay → Delay Window Width

➢(1−)→ Coverage

➢e → Tolerance Factor
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Supervised FDT: Feature Extraction & Selection

Supervised FDT Framework
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Feature 

Extractor

Statistical 

Features 

Fast Fourier 

Transforms

Wavelet

Transforms
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Feature Selection: Wrapper Approach 

OPTIMAL 
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Unsupervised FDT: Gas Turbine Degradation Detection

Unsupervised FDT

Industrial Application 
Gas Turbine Degradation 

Detection



Degradation Detection: Available Information

❑ Monitored Period: 8 months

❑ Monitored Signals (155)

• 98 Operating Condition

• 32 Vibrations [Feature extracted from raw data]

• 25 from Combustion Chamber

❑ Operating Conditions

➢ Stationary (Regime) 
• 40101 patterns (1 every 5 minutes)
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Gas Turbine Degradation Detection: Training of the Model

➢ Which data should be used for model training?

Different signal ranges each time the turbine is turned on

Training Set: data at the beginning of the usage period (just after turbine is turned on)

Training

Test

Training Set dynamically changes



Gas Turbine Degradation Detection: Residual Approach Results

6

5

43
2

1

Training Procedure (to be repeated each time turbine is turned on):

- Collect the data for a short period (e.g. 3 days) → Training Set

- Develop the PCA model → On-line signal reconstruction

Investigated Periods



Gas Turbine Degradation Detection: Residual Approach Results (II)
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Gas Turbine Degradation Detection: Residual Approach Results (III)
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Supervised FDT: Gas Turbine Degradation Assessment

Supervised FDT

Industrial Application 
Gas Turbine Degradation 

Assessment



Supervised FDT: Gas Turbine Degradation Assessment

❑ Monitored Period: 8 months

❑ Monitored Signals (155)

• 98 Operating Conditions

• 32 Vibrations

• 25 from Combustion Chamber

❑ Operating Conditions

➢ Transient

• 61 transients 

➢ 31 Shutdown

➢ 21 Cold Start-up

➢ 9 Hot Start-up

• 54793 patterns (1 every second)

[Feature Values (No raw data)]



Gas Turbine Degradation Assessment: Feature Extraction and Selection

1 Transient = 155 Signals

1 Transient = 155 signals x 87 Features = 13485 Features

Feature 

Extractor

155 

Signals

13485 

Features
Feature 

Selector



Gas Turbine Degradation Assessment : Results

• Shutdown transients

• 3 KNOWN classes (in accordance to previous analysis):

▪ Healthy

▪ Partially Degraded

▪ Severely Degraded

+ Monotonic behavior

Optimal candidate for RUL

prediction
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Predictive Maintenance FDT: Conclusions

➢ Fault Detection Tool (FDT) for Predictive Maintenance

❑ Unsupervised FDT (Only healthy data)

▪ Modules: Signal Reconstruction + Residual Statistical test

▪ Application: Turbine degradation onset detection

▪ Results: Degradation onset detection one month and a half in advance

with respect to the turbine failure

❑ Supervised FDT (Both healthy and degraded data)

▪ Modules: Feature Extraction + Feature Selection + Classification

▪ Application: Turbine degradation assessment

▪ Results: Accurate degradation classification. Identification of a

monotonic degradation indicator to be used for failure prediction.



Q&A

Questions & Answers
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Business Decision Making Model 

Predictive Maintenance Ultimate Goal: Integration into the Business Model 

Maintenance Decision 

Making

Predictive

Maintenance 

Module

Production Decision 

Making

……

Monitored 

Signals

Business 

Goals

• Maximize Revenues

• Environmental Safety

• …..

Optimized 

maintenance strategy 

for achieving the 

desired goals

Maintenance 

KPIs
• Maximum Plant Availability

• Minimum Maintenance Costs

• ….


