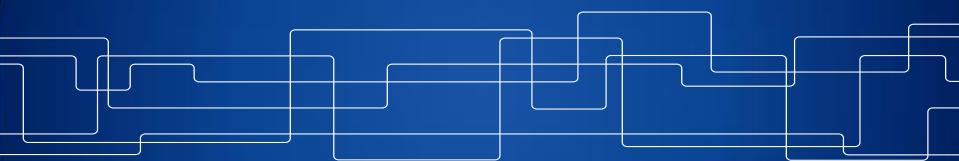


KTH Industrial Engineering and Management

Combined Cycles integrated with a Heat Pump and Thermal Energy Storage system for air Pre-cooling


A Techno-economic Feasibility Analysis

<u>Rafael Guédez, PhD</u> J. García, A. Nuutinen, G. Graziano, G. Martin, J. Chiu, B. Laumert

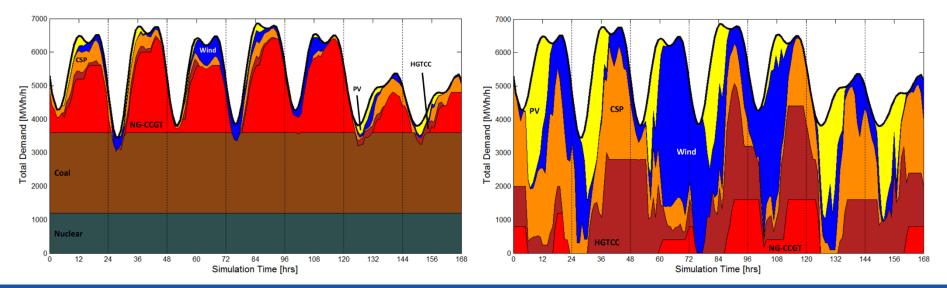
rafael.guedez@energy.kth.se

October 11, 2018

IGTC 2018, Brussels, Belgium

- Background Motivation
- Cycle Layout and Operating Modes
- Techno-economic Modeling Approach
- Case Study
 - Scenario Boundary Conditions
 - Performance Indicators
- Conclusions and Future Work

Increased share of "cheap" variable renewables in power markets



Thermal assets are recruited less and demanded to be more flexible

- Indeed thermal power plants e.g. Combined Cycles are less recruited
- Energy-only markets: from mid-merit to variable recruitment patterns and faster ramps
- Current assets are not profitable enough or cannot cope with such fluctuations
- · The electric grid still needs reliable and efficient installed thermal capacity

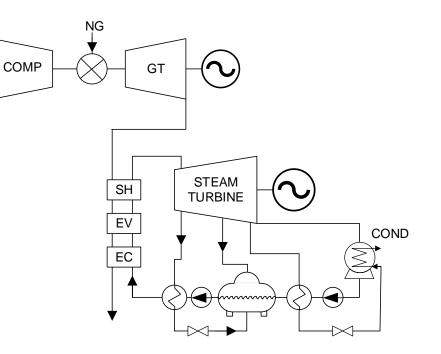
R. Guédez – KTH Energy Department

The PUMP-HEAT Project

"Performance Untapped Modulation for Power and Heat via Energy Accumulation Technologies"

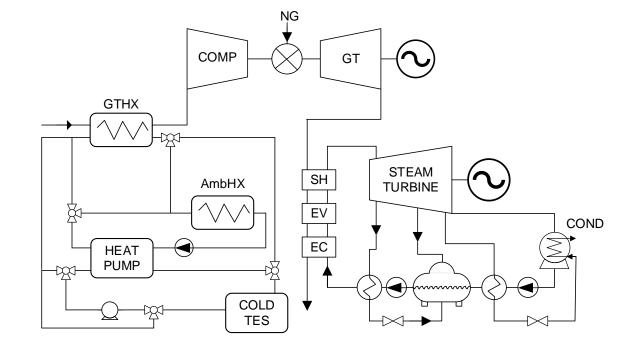
European Union's Horizon 2020 research and innovation program

Project Objective:


To investigate the viability of increasing the flexibility and cost-efficiency of Combined Cycle power plants by integrating thermal storage and heat pumps

Combined Cycle Gas Turbines (CCGT)

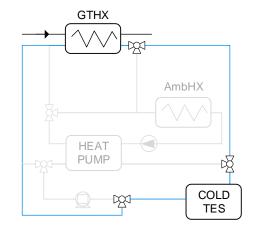
- Most efficient thermal cycle e.g. 50%-62% commercially
- Reliable and proven technology in wide range of capacities
- Can operate with different fuels e.g. bio-gas, natural gas
- Can provide ancillary services
- Can be designed to provide electricity and heat as end-products

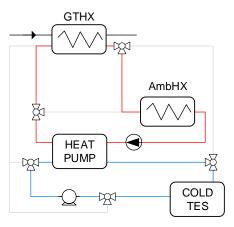


CCGT + Heat Pump + Thermal Energy Storage

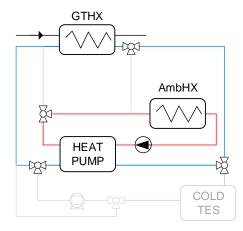
Flexibility in energy-only markets to increase profitability by:

- Pre-cooling the air during peak-price hours
- Storing cold energy during off-peak periods





CCGT-HP-TES: Operation – added flexibility

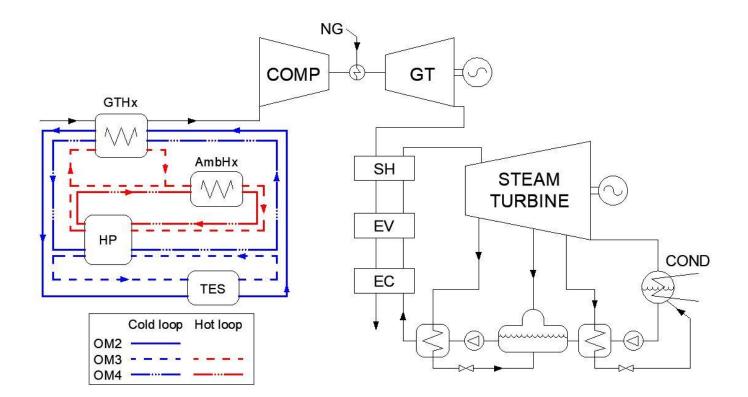

Discharging

Direct HP Cooling

Operation Mode	Ambient temperature	Electricity price
Charging	-	Lowest price hours
Discharging	> Set Point Temp	Highest price hours
Continuous cooling	> Set Point Temp	< Mean price
Anti-ice	< GT icing Temp	-

R. Guédez – KTH Energy Department

IGTC 2018 – Brussels, October 11, 2018



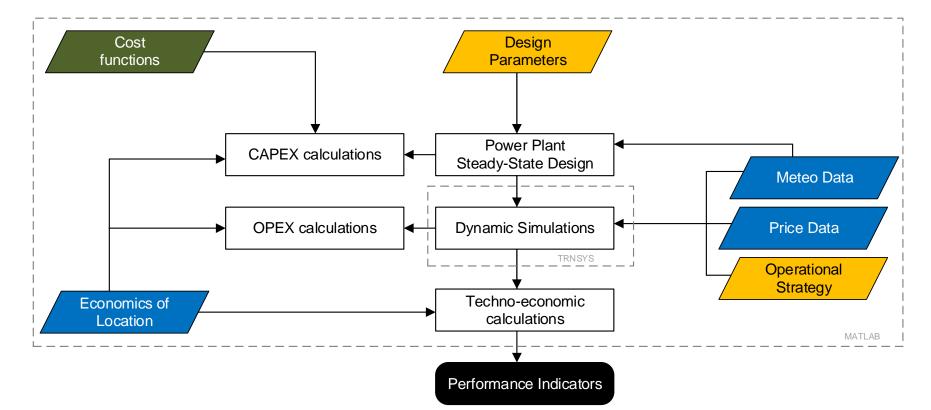
CCGT-HP-TES: Operation – added flexibility

	Advantages	Disadvantages
TES	 Low on-peak parasitic power required Lower investment cost than direct chilling for peaks lasting less than 8 hours 	 More off-peak power required Higher capital cost than direct chilling for peaks lasting more than 8 hours More complex system than direct chilling Chilled air available only part of the day
Continuous Cooling w/ HP	 Provides chilled air 24 hours a day Simple and reliable No off-peak parasitic power required Very efficient Higher operating hours 	 Higher on-peak parasitic power required Refrigeration equipment is sized for peak load → increased capital cost

CCGT-HP-TES: Operation – added flexibility

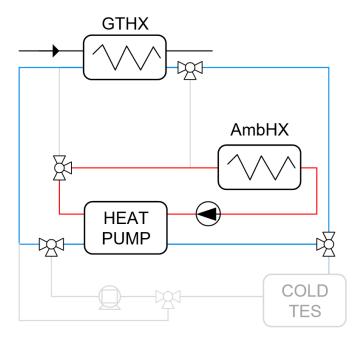
Objectives of this Research Work

To identify promising configurations from a techno-economic performance standpoint, when considering energy-only market revenues in a specific location.


In doing so:

- To develop a flexible techno-economic performance model of proposed layout
- To perform a comparative analysis against reference CCGT plant
- To suggest future work and identify under which market conditions is the proposed layout more suitable

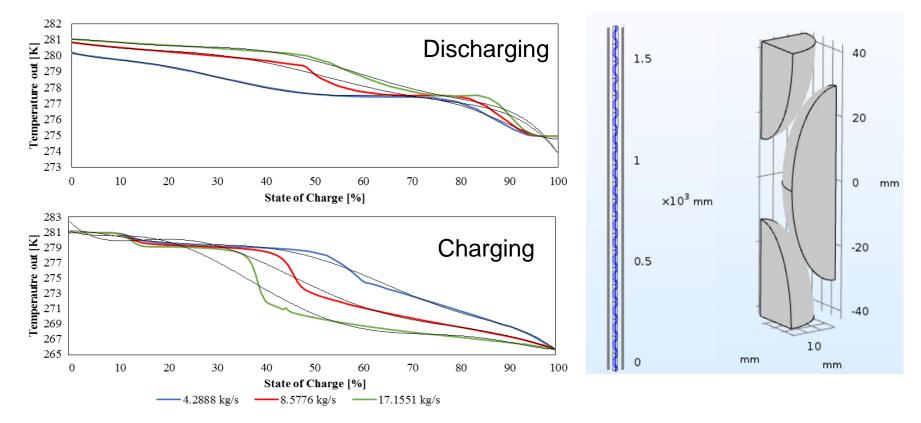
The work summarizes parts of the first deliverable from T1.3 of Pump Heat project WP1: "Scenario Analysis, Requirements Definition and Business Models" T1.3 "Thermo-economic models and key performance indicators"



Methodology: Modeling Approach

Methodology: Key Components: HP and HEx

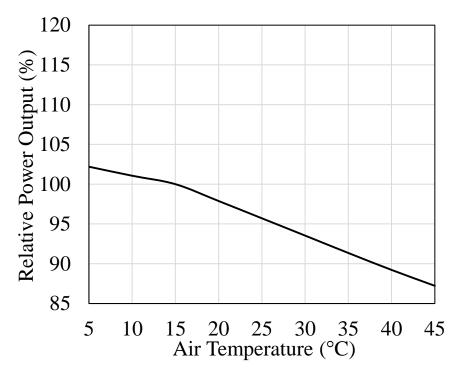
 $C_{p,WG} = (0.0006 \cdot T + 0.8652) \cdot 4.1868 [kJ/kgK]$


Design variable	Value
Ambient pressure	101 325 Pa
Air inlet	15°C
Air outlet	7.5°C
Pressure drop (constant)	2%
Liquid-side pinch temperature	2°C
Gas-side pinch temperature	3°C
Inlet WG mixture	0°C
Outlet WG mixture	25°C
Air mass flow	666 kg/s

 $COP_{cooling} = \frac{T_{evap,out}}{T_{cond,out} - T_{evap,out}}$

$$COP_{heating} = \frac{T_{cond,out}}{T_{cond,out} - T_{evap,out}}$$

Methodology: Key Components: TES


R. Guédez – KTH Energy Department

Methodology: Reference CCGT

Value	Unit
268.50	MW _{el}
18	-
1480	°C
Natural Ga	s
15	°C
47.011	MJ/kg
662.74	kg/s
575.4	°Č
	268.50 18 1480 Natural Ga 15 47.011 662.74

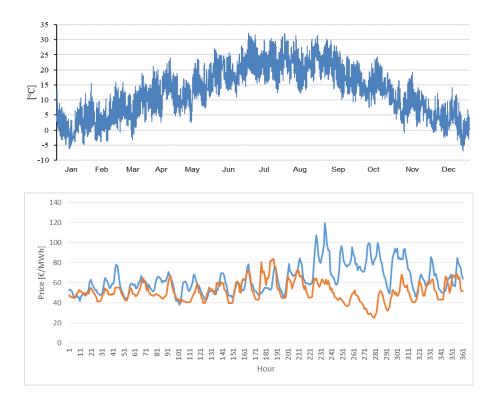
ST nominal conditions	Value	Unit
ST power	132.4	MWe
HP stage pressure	93.56	bar
IP stage pressure	27.77	bar
LP stage pressure	4.58	bar
HPT inlet temperature	540	°C
IPT inlet temperature	540	°C
LPT inlet temperature	294	°C
Condensate temperature	50	°C

Methodology: Key Performance Indicators (KPIs)

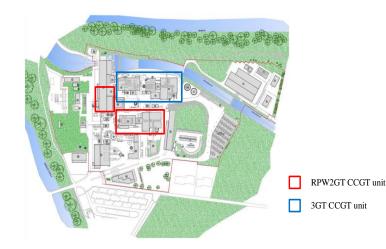
$$\mathbf{E}_{\rm el} = \int \left(E_{GT} + E_{ST} - E_{para} \right) dt$$

Technical KPIs

$$\eta_{el} = \frac{E_{el}}{\int (m_{fuel} \cdot LHV_{fuel}) \, dt}$$

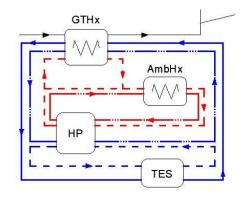

$$LCoE = \frac{\alpha * C_{inv} + \beta * C_{decom} + C_{oper} + C_{maint} + C_{labour}}{E_{el,net}}$$

Economic KPIs


$$IRR = r \ when \ \sum_{t=1}^{n} \left(\frac{B - C_{O\&M}}{(1+r)^{t}} \right) - C_{inv} = 0$$

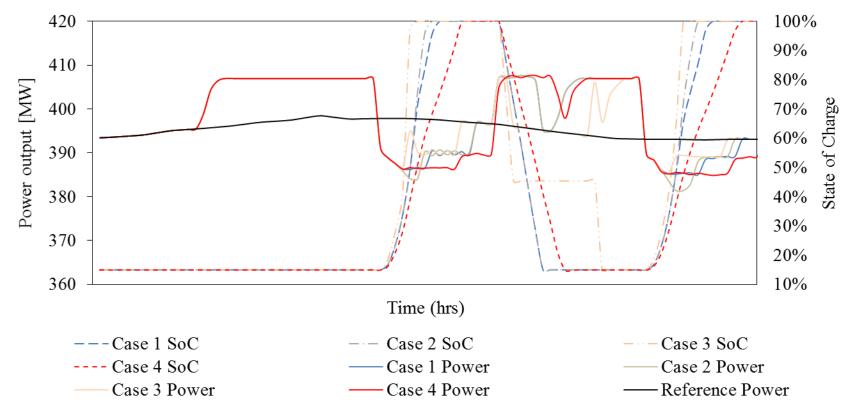
Case Study: Boundary Conditions

iren

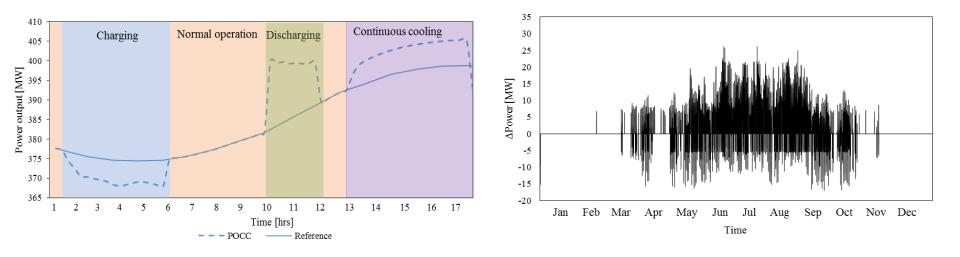


Case Study: Scenarios – Modeling Control

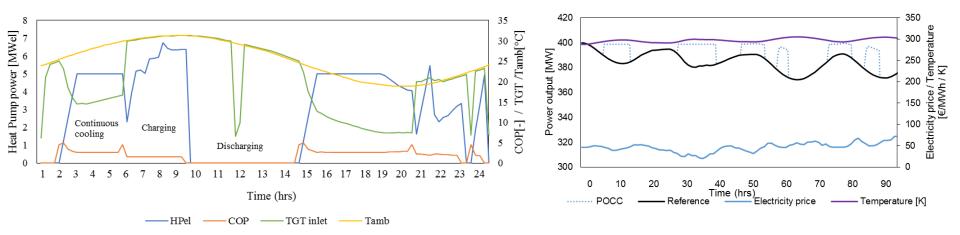
	Case 1	Case 2	Case 3	Case 4	Case 5
HP capacity	5 MW _{el}	$5 \mathrm{MW}_{\mathrm{el}}$	5 MW _{el}	5 MW _{el}	5 MW _{el}
TES capacity	12 MWh	12 MWh	6 MWh	18 MWh	-


Design/Operation Considerations	Value
Design COP	4.5
Design CC mass flow	500 kg/s
Design AmbHX air mass flow	1800 kg/s
Max GT inlet temp during charging	20°C
GT inlet aim T during cont. cooling	15°C
Max ramp-up	5 MW _{el} /hour
Minimum state of charge	15 %
Continuous cooling T _{amb}	15°C

Operation Mode	Ambient T	Electricity price
Charging	-	Daily minimum
Discharging	>15°C	Daily maximum
Cont. cooling	>15°C	< Daily mean
Anti-ice	< 5°C	-

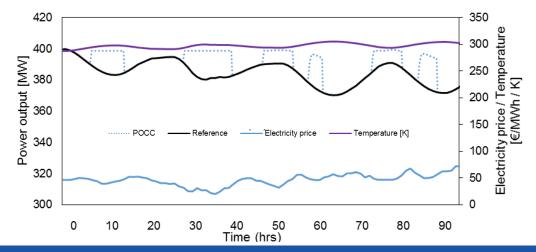


Case Study: Performance HP-TES cases



Case Study: Performance Results

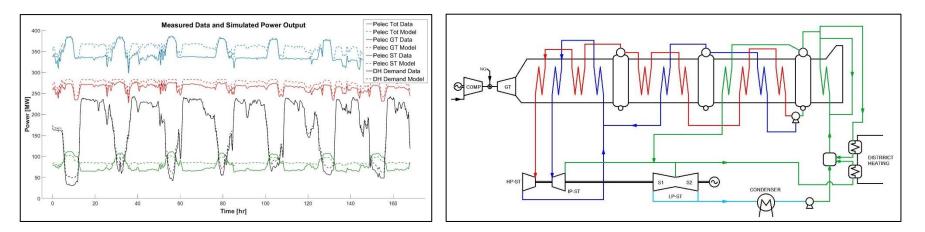
Case Study: Results: Cont. Cooling (HP only)


Case Study: Results: KPIs

	Total electricity (GWh _{el})	Mean power (MW)	Mean efficiency (%)	TES utilization factor (%)	Mean HP ramp-up (MW/min)	NPV (M€)	LCOE (€/MWh)	IRR (%)
Reference	3498	399.32	58.07	-	-	771	52.71	2.48
Case 1 5 MW _e + 12 MWh _{th}	3508	400.41	58.23	161	0.052	774	53.45	1.98
Case 2 7.5 MW _e + 12 MWh _{th}	3508	400.49	58.24	161	0.062	774	53.57	1.90
Case 3 5 MW _e + 6 MWh _{th}	3509	400.53	58.25	121	0.054	775	53.17	2.15
Case 4 5 MW _e + 18 MWh _{th}	3507	400.33	58.22	106	0.047	773	53.72	2.08
Case 5 5 MW _e + no TES	3523	402.20	58.49	-	0.032	783	52.79	2.44

Case Study: Results: Continuous Cooling

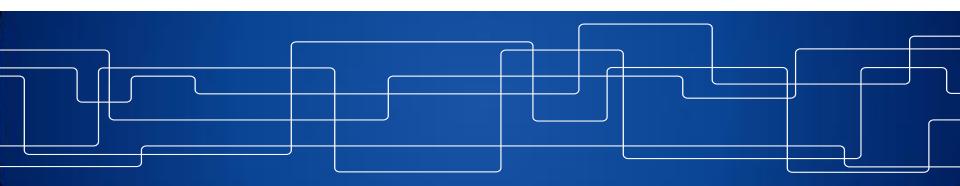
Switch on Air Temp. GT aim Temp.	15℃ 15℃	25°C 15°C	15℃ 7.5℃	25℃ 7.5℃	REF
Total electricity (GWh _{el})	3 516	3 503	3 523	3 504	3 498
Mean power (MW)	401.35	399.88	402.20	399.93	399.32
Mean efficiency (%)	58.37	58.16	58.49	58.16	58.07
NPV (M€)	779	772	783	772	771
LCOE (€/MWh)	52.90	53.10	52.79	53.09	52.71
IRR (%)	2.57	2.47	2.62	2.47	2.48


IGTC 2018 – Brussels, October 11, 2018

- A techno-economic model of an innovative CCGT integrated with an inlet GT mass flow pre-cooling loop consisting of a heat pump and a cold TES unit has been developed and used to evaluate the feasibility of such a concept.
- The proposed layout is shown to increase the annual yield by increasing the output of CCGT during times of peak electricity prices and at high ambient temperatures.
- The study shows that, for given cost assumptions and market considered, the proposed layout would be less profitable than a conventional CCGT → new markets / cost studies
- However, even at costs assumed, implementing the heat pump alone is shown to potentially bring cost-effective benefits to the cycle performance besides flexibility.
- It is identified that a market with higher price volatility and more pronounced peaks would potentially benefit the proposed layout (especially with flexibility revenue streams)

- Thermodynamic and transient model improvements.
- Sensitivity to costs and operating conditions.
- Evaluation of new markets and inclusion of additional revenue streams.
- Evaluation of new layouts: including heat as end-product.

KTH Industrial Engineering and Management


Combined Cycles integrated with a Heat Pump and Thermal Energy Storage system for air Pre-cooling

A Techno-economic Feasibility Analysis

Rafael Guédez, PhD

rafael.guedez@energy.kth.se

